Dacriólito (cálculo lacrimal) - definition. What is Dacriólito (cálculo lacrimal)
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

ÁREA DA MATEMÁTICA QUE ESTUDA TAXAS DE VARIAÇÃO DE GRANDEZAS E A ACUMULAÇÃO DE QUANTIDADES
Cálculo integral; Cálculo Diferencial e Integral; Cálculo Diferencial; Calculo; Cálculo diferencial; Cálculo diferencial e integral; Cálculo geométrico; Cálculo elementar; Cálculo

lacrimal         
Lacrimal
adj (lat lacrima+al3)
1 Relativo às lágrimas.
2 Relativo ou pertencente aos órgãos que segregam as lágrimas.
3 Situado perto desses órgãos
sf Pequena nascente de água
sm
1 Anat e Zool Pequeno osso no interior da órbita dos mamíferos; ungüe.
2 Arquit Parte da coroa das cornijas, saliente, destinada para evitar que as águas pluviais corram pelas paredes.
3 Agr Parte da relha do arado, onde entram as aivecas. Var: lagrimal.
Lacrimal         
Lacrimal
adj.
Relativo a lágrimas.
Que tem aspecto de lágrima.
Que serve para a secreção das lágrimas: canalículo lacrimal.
m.
Pequeno osso, dentro da órbita ocular.
(Lat. lacrimalis)
Osso lacrimal         
Lacrimal
O osso lacrimal, o menor e mais frágil osso da face, está situado na porção anterior da parede medial da órbita. Ele tem duas superfícies e quatro bordas.

ويكيبيديا

Cálculo infinitesimal

O cálculo infinitesimal, também conhecido como cálculo diferencial e integral ou simplesmente cálculo, é um ramo importante da matemática, desenvolvido a partir da Álgebra e da Geometria, que se dedica ao estudo de taxas de variação de grandezas (como a inclinação de uma reta) e a acumulação de quantidades (como a área debaixo de uma curva ou o volume de um sólido). Onde há movimento ou crescimento em que forças variáveis agem produzindo aceleração, o cálculo é a matemática a ser empregada. Foi criado como uma ferramenta auxiliar em várias áreas das ciências exatas. Desenvolvido simultaneamente por Gottfried Wilhelm Leibniz (1646-1716) e por Isaac Newton (1643-1727), em trabalhos independentes.

O cálculo tem inicialmente três "operações-base", ou seja, possui áreas iniciais como o cálculo de limites, o cálculo de derivadas de funções e a integral de diferenciais. Com o advento do Teorema Fundamental do Cálculo, estabeleceu-se uma conexão entre os dois ramos do cálculo: o Cálculo Diferencial e o Cálculo Integral. O cálculo diferencial surgiu do problema da tangente, enquanto o cálculo integral surgiu de um problema aparentemente não relacionado, o problema da área.

O professor de Isaac Newton em Cambridge, Isaac Barrow, descobriu que esses dois problemas estão de fato estritamente relacionados, ao perceber que a derivação e a integração são processos inversos. Foram Leibniz e Newton que exploraram essa relação e a utilizaram para transformar o cálculo em um método matemático sistemático. Particularmente ambos viram que o Teorema Fundamental os capacitou a calcular áreas e integrais muito mais facilmente, sem que fosse necessário calculá-las como limites de soma (método descrito pelo matemático Riemann, pupilo de Gauss). A integral indefinida também pode ser chamada de antiderivada, uma vez que é um processo que inverte a derivada de funções. Já a integral definida, inicialmente definida como Soma de Riemann, estabelece limites de integração, ou seja, é um processo estabelecido entre dois intervalos bem definidos, daí o nome integral definida.

O cálculo diferencial e o cálculo integral auxiliam em vários conceitos e definições na matemática, química, física clássica, física moderna e economia. O estudante de cálculo deve ter um conhecimento em certas áreas da matemática, como funções (modular, exponencial, logarítmica, par, ímpar, afim e segundo grau, por exemplo), trigonometria, polinômios, geometria plana, espacial e analítica, pois são a base do cálculo.