Офитовая структура - definition. What is Офитовая структура
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

МОП Структура; МОП структура; М—Д—П-структура; МОП-структура

Офитовая структура      
(от греч. ophítës - похожий на змею)

структура жильных и основных интрузивных горных пород, в которых плагиоклазы образуют крупные вытянутые кристаллы, а тёмные минералы (преимущественно пироксен) заполняют промежутки между ними. О. с. характерна для многих Габбро, а также для Диабазов. Выделяется большое количество разновидностей О. с., которые связаны взаимными переходами.

Математическая структура         
Математи́ческая структу́ра — название, объединяющее понятия, общей чертой которых является их применимость к множествам, природа которых не определена. Для определения самой структуры задают отношения, в которых находятся элементы этих множеств.
Структура (язык Си)         
ОПИСАНИЕ ТИПА ДАННЫХ В ЯЗЫКАХ ПРОГРАММИРОВАНИЯ C И C++
Структура (программирование); Struct
В языке Си, структура (struct) — композитный тип данных, инкапсулирующий без сокрытия набор значений различных типов. Порядок размещения значений в памяти задаётся при определении типа и сохраняется на протяжении времени жизни объектов, что даёт возможность косвенного доступа (например, через указатели).

ويكيبيديا

МДП-конденсатор

МДП-конденсатор (МДП-диод, [двухэлектродная] МДП-структура; англ. MIS capacitor) — структура «металл (М) - диэлектрик (Д) - полупроводник (П)», одна из важнейших в полупроводниковой электронике (является секцией полевого транзистора с изолированным затвором MISFET). В качестве полупроводника чаще всего используется кремний (Si), в роли диэлектрика выступает диоксид кремния (SiO2; в таком случае «МДП» заменяют на «МОП», О = оксид), а к популярным металлам относятся золото (Au) и алюминий (Al). Вместо металла нередко применяется сильно легированный поликристаллический кремний (poly-Si), при этом аббревиатура не меняется.

В зависимости от внешнего напряжения, приложенного между металлом и полупроводниковой подложкой, МДП-конденсатор за счёт эффекта поля находится в одном из трёх зарядовых состояний —

  • обогащения,
  • обеднения,
  • инверсии.

Для полевых транзисторов наиболее значим последний режим. Инверсный, обеднённый, обогащённый «слои» не являются встроенными (и существуют только пока держится соответствующее напряжение).

Зарядовое состояние диктуется сравнением типов проводимости в толще полупроводника и у границы с диэлектриком. Если к полупроводнику p-типа приложено большое положительное напряжение относительно металла, то у границы с окислом концентрация основных носителей (дырок) станет выше, чем в толще, — это обогащение (не показано на рис.). Если приложено небольшое отрицательное напряжение, то концентрация дырок у границы будет меньше, чем в толще, и они не смогут компенсировать отрицательный заряд ионов примеси — имеем обеднение (см. рис.). Наконец, когда на полупроводник подано большое отрицательное напряжение (или на металл большое положительное, см. рис.),наличествуют не только область заряженных ионов, но и слой заряда электронов, являющихся неосновными носителями, — это инверсия.

Обычно подразумевается, что МДП-конденсатор не проводит ток. Но в случае сверхтонкого диэлектрика перенос заряда возможен, причём не вследствие повреждения или паразитных утечек, а за счёт туннелирования.

Назначение МДП-конденсаторов:

  • непосредственное применение в микросхемах в функции ёмкости (максимальная ёмкость составляет примерно ε 0 ε A / d {\displaystyle \varepsilon _{0}\varepsilon A/d} , где ε 0 ε {\displaystyle \varepsilon _{0}\varepsilon } - абсолютная диэлектрическая проницаемость, A {\displaystyle A} - площадь, d {\displaystyle d} - толщина диэлектрика);
  • использование как тестовой системы (проще, чем MISFET) при работе с новыми материалами: оптимизации их технологии, испытаниях стойкости, измерении утечек, оценке поверхностной плотности дефектов и т.п.;
  • использование в учебных целях для представления зарядовых состояний (выше) и ряда квантовых эффектов (туннелирование, поверхностное квантование);
  • использование в качестве фотодетектора или солнечного элемента;
  • [при наличии переноса заряда через диэлектрик] задействование как высокочастотных МДП-диодов (точнее, туннельных МДП-диодов).

Чаще всего МДП-конденсаторы не изготавливаются как самостоятельные приборы, а появляются как составная часть MISFET'ов (их сечение затвор-подложка). А МДП-структуры с туннельным переносом заряда появляются как составная часть ряда твердотельных элементов памяти, таких как EEPROM.

С учётом потребности полупроводниковой промышленности,наибольший интерес сейчас представляет диапазон толщин диэлектрика d {\displaystyle d} от единиц до десятков нанометров. Постепенно SiO2 вытесняется так называемыми high-k-диэлектриками с большей, чем у SiO2, диэлектрической проницаемостью.

What is Оф<font color="red">и</font>товая структ<font color="red">у</font>ра - definition