одно из важнейших понятий механики. Движение любой механической системы, например машины, гироскопического устройства (См.
Гироскопические устройства)
, самолёта, снаряда и т.п., зависит от действующих сил и т. н. начальных условий, т. е. от положений и скоростей точек системы в момент начала движения. Зная эти силы и начальные условия, можно теоретически рассчитать, как будет двигаться система. Движение, соответствующее этому расчёту, называется невозмущённым. Но поскольку все измерения производятся с той или иной степенью точности, то
на практике истинные значения начальных условий будут обычно несколько отличаться от расчётных. Кроме того, механическая система может во время движения подвергнуться незначительным случайным воздействиям, не учтенным
при расчёте, что тоже эквивалентно изменению начальных условий. Возникающие по разным причинам отклонения начальных условий от их расчётных значений, называются начальными возмущениями, а движение, которое система будет совершать
при наличии этих возмущений, - возмущённым движением.
Влияние начальных возмущений на характеристики движения системы (траектории её точек, их скорости и т.п.) может быть двояким. Если при достаточно малых начальных возмущениях каких-нибудь из характеристик во всё последующее время мало отличается от того значения, которое она должна иметь в невозмущённом движении, то движение системы по отношению к этой характеристике называется устойчивым. Если же при сколь угодно малых, но не равных нулю начальных возмущениях данная характеристика со временем будет всё более и более отличаться от значения, которое она должна иметь в невозмущённом движении, то движение системы по отношению к этой характеристике называется неустойчивым. Эти определения соответствуют определению У. д. по А. М. Ляпунову. Условия, при которых движение механической системы является устойчивым, называются критериями устойчивости.
В качестве примера рассмотрим
Гироскоп (волчок), ось которого вертикальна и который вращается вокруг этой оси с угловой скоростью (
рис.). Теоретически ось гироскопа должна оставаться вертикальной
при любом значении ω, но фактически, когда ω меньше некоторой величины ω
кр, ось
при любом малом возмущении (толчке) будет всё более отклоняться от вертикали. Если же ω больше ω
кр, то малые возмущения практически направление оси не изменят. Следовательно,
при ω < ω
кр гироскоп по отношению к направлению его оси неустойчив, а
при ω> ω
кр устойчив. Последнее неравенство и является критерием устойчивости,
при этом ω
кр =
, где
Р вес гироскопа,
а расстояние от точки опоры
О до центра тяжести
С,
Ix и
Iy - моменты инерции гироскопа относительно осей
х и
у соответственно.
Теория У. д. имеет важное практическое значение для многих областей техники, т.к. У. д. должны обладать различного рода двигатели, автомобили, самолёты, ракеты, гироскопические приборы, системы автоматического регулирования и др. В небесной механике проблема У. д. возникает при изучении вопроса о длительности сохранения структуры солнечной системы, двойных звёзд и др.
Лит.: Ляпунов А. М., Общая задача об устойчивости движения, М. - Л., 1950; Четаев Н. Г., Устойчивость движения, 2 изд., М., 1955; Дубошин Г. Н., Основы теории устойчивости движения, [М.], 1952; Красовский Н. Н., Некоторые задачи теории устойчивости движения, М., 1959; Малкин И. Г., Теория устойчивости движения, М. - Л., 1952; Меркин Д. Р., Введение в теорию устойчивости движения, М., 1971 (лит.).
К ст. Устойчивость движения.