wreathed subgroup - ترجمة إلى الروسية
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:     

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

wreathed subgroup - ترجمة إلى الروسية

OPERATION ON TWO GROUPS IN GROUP THEORY
Wreathed product; ≀

wreathed subgroup      

математика

скованная подгруппа

invariant subgroup         
SUBGROUP INVARIANT UNDER CONJUGATION
Normal subgroups; Invariant subgroup; ◅; Normal group; ⊲; ⊳; ⊴; ⊵; ⋪; ⋫; ⋬; ⋭; Normal Subgroup; Self-conjugate subgroup

математика

инвариантная подгруппа

нормальный делитель

normal subgroup         
SUBGROUP INVARIANT UNDER CONJUGATION
Normal subgroups; Invariant subgroup; ◅; Normal group; ⊲; ⊳; ⊴; ⊵; ⋪; ⋫; ⋬; ⋭; Normal Subgroup; Self-conjugate subgroup

математика

делитель нормальный

تعريف

Subgroup
·noun A subdivision of a group, as of animals.

ويكيبيديا

Wreath product

In group theory, the wreath product is a special combination of two groups based on the semidirect product. It is formed by the action of one group on many copies of another group, somewhat analogous to exponentiation. Wreath products are used in the classification of permutation groups and also provide a way of constructing interesting examples of groups.

Given two groups A {\displaystyle A} and H {\displaystyle H} (sometimes known as the bottom and top), there exist two variations of the wreath product: the unrestricted wreath product A  Wr  H {\displaystyle A{\text{ Wr }}H} and the restricted wreath product A  wr  H {\displaystyle A{\text{ wr }}H} . The general form, denoted by A  Wr Ω H {\displaystyle A{\text{ Wr}}_{\Omega }H} or A  wr Ω H {\displaystyle A{\text{ wr}}_{\Omega }H} respectively, requires that H {\displaystyle H} acts on some set Ω {\displaystyle \Omega } ; when unspecified, usually Ω = H {\displaystyle \Omega =H} (a regular wreath product), though a different Ω {\displaystyle \Omega } is sometimes implied. The two variations coincide when A {\displaystyle A} , H {\displaystyle H} , and Ω {\displaystyle \Omega } are all finite. Either variation is also denoted as A H {\displaystyle A\wr H} (with \wr for the LaTeX symbol) or A ≀ H (Unicode U+2240).

The notion generalizes to semigroups and is a central construction in the Krohn–Rhodes structure theory of finite semigroups.

What is the الروسية for wreathed subgroup? Translation of &#39wreathed subgroup&#39 to الروسية