isolated abutment - ترجمة إلى العربية
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

isolated abutment - ترجمة إلى العربية

THEOREM
Isolated zeros theorem; Isolated zeroes theorem

isolated abutment      
دِعْمَةٌ مَعْزولَة
isolated abutment      
‎ دِعْمَةٌ مَعْزولَة,دِعْمَةٌ مُتَوَسِّطَة‎
abutment         
  • Abutment for a large steel arch bridge
  • rail bridge]] and earthen fill of the bridge approach embankment at Old Town Station Staten Island Railway - Staten Island, New York
  • Brick abutment supporting disused tramway over the [[Yass River]] in [[Yass, New South Wales]]
SUBSTRUCTURE AT THE ENDS OF A BRIDGE SPAN OR DAM SUPPORTING ITS SUPERSTRUCTURE
Abutments; Bridge abutments; Bridge abutment
متاخمة ، مُجاورة مُلتقى دعامة جسر ، كتف قنطرة

تعريف

Abutment
·noun State of abutting.
II. Abutment ·noun That on or against which a body abuts or presses.
III. Abutment ·noun In breech-loading firearms, the block behind the barrel which receives the pressure due to recoil.
IV. Abutment ·noun The solid part of a pier or wall, ·etc., which receives the thrust or lateral pressure of an arch, vault, or strut.
V. Abutment ·noun A fixed point or surface from which resistance or reaction is obtained, as the cylinder head of a steam engine, the fulcrum of a lever, ·etc.

ويكيبيديا

Identity theorem

In real analysis and complex analysis, branches of mathematics, the identity theorem for analytic functions states: given functions f and g analytic on a domain D (open and connected subset of R {\displaystyle \mathbb {R} } or C {\displaystyle \mathbb {C} } ), if f = g on some S D {\displaystyle S\subseteq D} , where S {\displaystyle S} has an accumulation point, then f = g on D.

Thus an analytic function is completely determined by its values on a single open neighborhood in D, or even a countable subset of D (provided this contains a converging sequence). This is not true in general for real-differentiable functions, even infinitely real-differentiable functions. In comparison, analytic functions are a much more rigid notion. Informally, one sometimes summarizes the theorem by saying analytic functions are "hard" (as opposed to, say, continuous functions which are "soft").

The underpinning fact from which the theorem is established is the expandability of a holomorphic function into its Taylor series.

The connectedness assumption on the domain D is necessary. For example, if D consists of two disjoint open sets, f {\displaystyle f} can be 0 {\displaystyle 0} on one open set, and 1 {\displaystyle 1} on another, while g {\displaystyle g} is 0 {\displaystyle 0} on one, and 2 {\displaystyle 2} on another.