quadratic function - ترجمة إلى العربية
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:     

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

quadratic function - ترجمة إلى العربية

FUNCTION DEFINED BY A POLYNOMIAL OF DEGREE TWO
Quadratic polynomial; Quadratic functions; Second degree polynomial; Quadratic trinomial; Second-degree polynomial; Second-order polynomial; Second order polynomial; Y=ax^2+bx+c; Y=ax2+bx+c; Quadratic expression; Quadratic math; Single-variable quadratic function

quadratic function         
دالة من الدرجة الثانية
quadratic expression         
تعبير ثنائى الدرجة
quadratic programming         
SOLVING AN OPTIMIZATION PROBLEM WITH A QUADRATIC OBJECTIVE FUNCTION
Quadratic program; List of solvers for quadratic programming problems
برمجة تربيعية

تعريف

quadratic
[kw?'drat?k]
¦ adjective Mathematics involving the second and no higher power of an unknown quantity or variable.
Origin
C17: from Fr. quadratique or mod. L. quadraticus, from quadratus, quadrare (see quadrate).

ويكيبيديا

Quadratic function

In mathematics, a quadratic polynomial is a polynomial of degree two in one or more variables. A quadratic function is the polynomial function defined by a quadratic polynomial. Before 20th century, the distinction was unclear between a polynomial and its associated polynomial function; so "quadratic polynomial" and "quadratic function" were almost synonymous. This is still the case in many elementary courses, where both terms are often abbreviated as "quadratic".

For example, a univariate (single-variable) quadratic function has the form

f ( x ) = a x 2 + b x + c , a 0 , {\displaystyle f(x)=ax^{2}+bx+c,\quad a\neq 0,}

where x is its variable. The graph of a univariate quadratic function is a parabola, a curve that has an axis of symmetry parallel to the y-axis.

If a quadratic function is equated with zero, then the result is a quadratic equation. The solutions of a quadratic equation are the zeros of the corresponding quadratic function.

The bivariate case in terms of variables x and y has the form

f ( x , y ) = a x 2 + b x y + c y 2 + d x + e y + f , {\displaystyle f(x,y)=ax^{2}+bxy+cy^{2}+dx+ey+f,}

with at least one of a, b, c not equal to zero. The zeros of this quadratic function is, in general (that is, if a certain expression of the coefficients is not equal to zero), a conic section (a circle or other ellipse, a parabola, or a hyperbola).

A quadratic function in three variables x, y, and z contains exclusively terms x2, y2, z2, xy, xz, yz, x, y, z, and a constant:

f ( x , y , z ) = a x 2 + b y 2 + c z 2 + d x y + e x z + f y z + g x + h y + i z + j , {\displaystyle f(x,y,z)=ax^{2}+by^{2}+cz^{2}+dxy+exz+fyz+gx+hy+iz+j,}

where at least one of the coefficients a, b, c, d, e, f of the second-degree terms is not zero.

A quadratic function can have an arbitrarily large number of variables. The set of its zero form a quadric, which is a surface in the case of three variables and a hypersurface in general case.