Lagrange method - ترجمة إلى إسباني
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

Lagrange method - ترجمة إلى إسباني

A METHOD TO SOLVE CONSTRAINED OPTIMIZATION PROBLEMS
Lagrange Multiplier; Lagrangian multiplier; Lagrangian Multiplier; Lagrangian Function; Lagrangian multipliers; Lagrange multiplier method; LaGrange multiplier; Lagrangian multiplicator; Lagrange's method; Lagrange's undetermined multiplier; Lagrangian function; Lagrange function; Method of Lagrange multipliers; Method of Lagrange Multipliers; Lagrange multiplier principle; Lagrange multipliers; Lagrangian minimization; Lagrange multipliers method; Lagrangian expression

Lagrange method      
Método de Lagrangé (en matemáticas)
teaching method         
GROUP OF METHODS AND PRINCIPLES USED TO TEACH
Teaching methods; Teaching technique; Training method
(n.) = método docente, método de enseñanza
Ex: The learning objectives and teaching methods exhibited considerable variety, however.
teaching method         
GROUP OF METHODS AND PRINCIPLES USED TO TEACH
Teaching methods; Teaching technique; Training method
Método de enseñanza (sistema y reglamentos de enseñanza )

تعريف

class method
<programming> A kind of method, available in some object-oriented programming languages, that operates on the class as a whole, as opposed to an object method that operates on an object that is an instance of the class. A typical example of a class method would be one that keeps a count of the number of objects of that class that have been created. (2000-03-22)

ويكيبيديا

Lagrange multiplier

In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equality constraints (i.e., subject to the condition that one or more equations have to be satisfied exactly by the chosen values of the variables). It is named after the mathematician Joseph-Louis Lagrange. The basic idea is to convert a constrained problem into a form such that the derivative test of an unconstrained problem can still be applied. The relationship between the gradient of the function and gradients of the constraints rather naturally leads to a reformulation of the original problem, known as the Lagrangian function.

The method can be summarized as follows: In order to find the maximum or minimum of a function   f ( x )   {\displaystyle \ f(x)\ } subjected to the equality constraint   g ( x ) = 0   , {\displaystyle \ g(x)=0\ ,} form the Lagrangian function,

  L ( x , λ ) f ( x ) + λ g ( x )   , {\displaystyle \ {\mathcal {L}}(x,\lambda )\equiv f(x)+\lambda \cdot g(x)\ ,}

and find the stationary points of   L   {\displaystyle \ {\mathcal {L}}\ } considered as a function of   x   {\displaystyle \ x\ } and the Lagrange multiplier   λ   . {\displaystyle \ \lambda ~.} This means that all partial derivatives should be zero, including the partial derivative with respect to   λ   . {\displaystyle \ \lambda ~.}

    L   x = 0 {\displaystyle \ {\frac {\ \partial {\mathcal {L}}\ }{\partial x}}=0\qquad } and   L   λ = 0   ; {\displaystyle \qquad {\frac {\ \partial {\mathcal {L}}\ }{\partial \lambda }}=0\ ;}

or equivalently

    f ( x )   x + λ   g ( x )   x = 0 {\displaystyle \ {\frac {\ \partial f(x)\ }{\partial x}}+\lambda \cdot {\frac {\ \partial g(x)\ }{\partial x}}=0\qquad } and g ( x ) = 0   . {\displaystyle \qquad g(x)=0~.}

The solution corresponding to the original constrained optimization is always a saddle point of the Lagrangian function, which can be identified among the stationary points from the definiteness of the bordered Hessian matrix.

The great advantage of this method is that it allows the optimization to be solved without explicit parameterization in terms of the constraints. As a result, the method of Lagrange multipliers is widely used to solve challenging constrained optimization problems. Further, the method of Lagrange multipliers is generalized by the Karush–Kuhn–Tucker conditions, which can also take into account inequality constraints of the form   h ( x ) c   {\displaystyle \ h(\mathbf {x} )\leq c\ } for a given constant   c   . {\displaystyle \ c~.}