electromagnetic$24209$ - ترجمة إلى اليونانية
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

electromagnetic$24209$ - ترجمة إلى اليونانية

WIKIMEDIA DISAMBIGUATION PAGE
Electromagnetic Weapon; Electromagnetic weapon (disambiguation)

electromagnetic      
adj. ηλεκτρομαγνητικός
electromagnetic waves         
  • opacity]]) of various [[wavelength]]s of electromagnetic radiation
  • Representation of the electric field vector of a wave of circularly polarized electromagnetic radiation.
  • [[Electromagnetic spectrum]] with visible light highlighted
  • Electromagnetic waves can be imagined as a self-propagating transverse oscillating wave of electric and magnetic fields. This 3D animation shows a plane linearly polarized wave propagating from left to right. The electric and magnetic fields in such a wave are in-phase with each other, reaching minima and maxima together.
  • far field]] part of the electromagnetic field around a transmitter. A part of the "near-field" close to the transmitter, forms part of the changing [[electromagnetic field]], but does not count as electromagnetic radiation.
  • [[James Clerk Maxwell]]
  • '''Legend:'''<br />
γ = [[Gamma ray]]s<br />
<br />
HX = Hard [[X-ray]]s<br />
SX = Soft X-Rays<br />
<br />
EUV = Extreme-[[ultraviolet]]<br />
NUV = Near-ultraviolet<br />
<br />
[[Visible light]] (colored bands)<br />
<br />
NIR = Near-[[infrared]]<br />
MIR = Mid-infrared<br />
FIR = Far-infrared<br />
<br />
EHF = [[Extremely high frequency]] (microwaves)<br />
SHF = [[Super-high frequency]] (microwaves)<br />
<br />
UHF = [[Ultrahigh frequency]] (radio waves)<br />
VHF = [[Very high frequency]] (radio)<br />
HF = [[High frequency]] (radio)<br />
MF = [[Medium frequency]] (radio)<br />
LF = [[Low frequency]] (radio)<br />
VLF = [[Very low frequency]] (radio)<br />
VF = [[Voice frequency]]<br />
ULF = [[Ultra-low frequency]] (radio)<br />
SLF = [[Super-low frequency]] (radio)<br />
ELF = [[Extremely low frequency]] (radio)
  • 400x200px
  • light]] (blue, green, and red) with a distance scale in micrometers along the x-axis.
FORM OF ENERGY EMITTED AND ABSORBED BY PARTICLES WHICH ARE CHARGED WHICH SHOWS WAVE-LIKE BEHAVIOR AS IT TRAVELS THROUGH SPACE
Electromagnectic radiation; Electromagnetic wave; Light wave; Electromagnetic waves; EM radiation; E.M. radiation; E. M. radiation; RF radiation; Electro-magnetic radiation; Magnetoelectric wave; Theory of radiation; Electromagnetic Radiation; Radiation emission; Radiation emissions; Em wave; EM wave; EM Waves; E-M Waves; Em waves; Electronic smog; Electromagnetic Wave; Electromagnetic wave theory; Electro magnetic waves; Emag waves; Electrical smog; Electromagnetic resonance; Electromagnetic Waves; Electro magnetic energy; Electromagnetic emission; Electromagnetic emissions; Photon radiation; Electromagnetic signal; E/M wave
ηλεκτρομαγνητικά κύματα
nuclear fission         
  • The "curve of binding energy": A graph of binding energy per nucleon of common isotopes.
  • Animation of a [[Coulomb explosion]] in the case of a cluster of positively charged nuclei, akin to a cluster of fission fragments. [[Hue]] level of  color
is proportional to (larger) nuclei charge. Electrons (smaller) on this time-scale are seen only stroboscopically and the hue level is their kinetic energy
  • A schematic nuclear fission chain reaction. 1.&nbsp;A [[uranium-235]] atom absorbs a [[neutron]] and fissions into two new atoms (fission fragments), releasing three new neutrons and some binding energy. 2.&nbsp;One of those neutrons is absorbed by an atom of [[uranium-238]] and does not continue the reaction. Another neutron is simply lost and does not collide with anything, also not continuing the reaction. However, the one neutron does collide with an atom of uranium-235, which then fissions and releases two neutrons and some binding energy. 3.&nbsp;Both of those neutrons collide with uranium-235 atoms, each of which fissions and releases between one and three neutrons, which can then continue the reaction.
  • [[Otto Hahn]] and [[Lise Meitner]] in 1912
  • pages= 56–78}}</ref>
  •  website=[[YouTube]] }}</ref> but would not have been together in the same room.
  • The [[cooling tower]]s of the [[Philippsburg Nuclear Power Plant]], in [[Germany]].
  • Drawing of the first artificial reactor, [[Chicago Pile-1]].
  • The stages of binary fission in a liquid drop model. Energy input deforms the nucleus into a fat "cigar" shape, then a "peanut" shape, followed by binary fission as the two lobes exceed the short-range [[nuclear force]] attraction distance, then are pushed apart and away by their electrical charge. In the liquid drop model, the two fission fragments are predicted to be the same size. The nuclear shell model allows for them to differ in size, as usually experimentally observed.
  • Fission product yields by mass for [[thermal neutron]] fission of [[uranium-235]], [[plutonium-239]], a combination of the two typical of current nuclear power reactors, and [[uranium-233]] used in the [[thorium cycle]].
  • A visual representation of an induced nuclear fission event where a slow-moving neutron is absorbed by the nucleus of a uranium-235 atom, which fissions into two fast-moving lighter elements (fission products) and additional neutrons. Most of the energy released is in the form of the kinetic velocities of the fission products and the neutrons.
A NUCLEAR REACTION SPLITTING AN ATOM INTO MULTIPLE PARTS
Thermonuclear fission; Nuclear Fission; Nuclearfission; Fission reaction; Splitting the atom; Nuclear fision; Splitting of the atom; Fission explosions; Split the atom; Atomic fission; Electromagnetic induced fission; Electromagnetic Induced fission; Induced fission
πυρηνική διάσπαση

تعريف

Radio Frequency Interference
<hardware, testing> (RFI) Electromagnetic radiation which is emitted by electrical circuits carrying rapidly changing signals, as a by-product of their normal operation, and which causes unwanted signals (interference or noise) to be induced in other circuits. The most important means of reducing RFI are: use of bypass or "decoupling" capacitors on each active device (connected across the power supply, as close to the device as possible), risetime control of high speed signals using series resistors and VCC filtering. Shielding is usually a last resort after other techniques have failed because of the added expense of RF gaskets and the like. The efficiency of the radiation is dependant on the height above the ground or power plane (at RF one is as good as the other) and the length of the conductor in relationship to the wavelength of the signal component (fundamental, harmonic or transient (overshoot, undershoot or ringing)). At lower frequencies, such as 133 MHz, radiation is almost exclusively via I/O cables; RF noise gets onto the power planes and is coupled to the line drivers via the VCC and ground pins. The Rf is then coupled to the cable through the line driver as common node noise. Since the noise is common mode, shielding has very little effect, even with differential pairs. The RF energy is capacitively coupled from the signal pair to the shield and the shield itself does the radiating. At higher frequencies, usually above 500 Mhz, traces get electrically longer and higher above the plane. Two techniques are used at these frequencies: wave shaping with series resistors and embedding the traces between the two planes. If all these measures still leave too much RFI, sheilding such as RF gaskets and copper tape can be used. Most digital equipment is designed with metal, or coated plastic, cases. Switching power supplies can be a source of RFI, but have become less of a problem as design techniques have improved. Most countries have legal requirements that electronic and electrical hardware must still work correctly when subjected to certain amounts of RFI, and should not emit RFI which could interfere with other equipment (such as radios). See also Electrostatic Discharge, {Electromagnetic Compatibility}. (1998-01-26)

ويكيبيديا

Electromagnetic weapon

Electromagnetic weapon may refer to:

  • Electromagnetic pulse (EMP), a natural or man-made transient electromagnetic disturbance
  • Directed-energy weapon (DEW), a ranged weapon system that emits highly focused energy