interseção dos conjuntos - ترجمة إلى
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:     

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

interseção dos conjuntos - ترجمة إلى

RELAÇÃO BINÁRIA SOBRE UM CONJUNTO, TAL QUE TODO ELEMENTO ESTÁ RELACIONADO A SI MESMO
Reflexividade (teoria dos conjuntos)

conjunto         
COLEÇÃO MATEMÁTICA BEM DEFINIDA DE OBJETOS DISTINTOS
Conjuntos; Subconjunto impróprio; Conjunto (matemática); Subconjuntos
собрание, совокупность, целое, набор, комплект, блок, агрегат, узел, система (напр., уравнений), семейство (кривых)
conjunto         
COLEÇÃO MATEMÁTICA BEM DEFINIDA DE OBJETOS DISTINTOS
Conjuntos; Subconjunto impróprio; Conjunto (matemática); Subconjuntos
{m}
- собрание, совокупность, целое;
- набор, комплект;
- блок, агрегат; узел;
- система (напр., уравнений); семейство (кривых)
interseção dos conjuntos      
пересечение множеств

تعريف

ГАРРИНЧА
Гарринша (Garrincha) Мануэл Франсиску дус Сантос (1933-83), бразильский спортсмен (футбол). Выступал в составе команды "Ботафого" (Рио-де-Жанейро) в 1953-65. Чемпион мира 1958 и 1962. Один из лучших крайних нападающих в истории мирового футбола.
---
Гарринша (Gаrrincha) Мануэл Франсиску дус Сантос (28 октября 1933, Пау-Гранде, округ Маже, штат Гуанабара - 20 января 1983, Рио-де-Жанейро), бразильский спортсмен. Двукратный чемпион мира (1958 и 1962) по футболу в составе национальной сборной. Лучший правый крайний нападающий в истории мирового футбола. Неудержимый Дед и отец его были родом из небольшого индейского племени фулнио из штата Алагоас. Гарринча отличался свободолюбивым и независимым характером. В 20 лет он вышел на поле знаменитого клуба "Ботафого" (Рио-де-Жанейро) и, показав целый каскад оригинальных финтов, легко обыграл защитника сборной Бразилии Н. Сантоса; после этого был сразу зачислен в команду (1953). В первом же матче забил три гола. В 1958 на чемпионате мира в Швеции вышел на поле в матче со сборной СССР вместе с 17-летним Пеле и устроил яркий "бенефис" футбола, о котором с восторгом вспоминали очевидцы. В течение 8 лет сборная Бразилии не проиграла ни одного матча, пока в ее составе играли Пеле и Гарринча. Тренеры "Ботафого" и сборной предоставили Гарринче полную свободу действий на правом фланге, где он был неудержим. "Чарли Чаплин футбола" Так прозвали его журналисты и за походку вразвалочку (ведь одна нога была заметно короче другой) и за элегантное, артистическое обращение с мячом, выражавшееся в точнейших пасах, в искусстве обводки, в мощных и точных ударах по воротам. В каждом сезоне он забивал не менее 20 голов, а лучшими для него как для бомбардира стали 1958 и 1962 - 33 и 35 голов в составе "Ботафого". В середине 1960-х гг. из-за серьезных травм вынужден был пропустить много игр. В 1966 провел последние матчи в составе сборной Бразилии на чемпионате мира в Лондоне (всего сыграл за сборную Бразилии 61 матч и забил 17 голов). После "Ботафого" (1953-65) выступал за клубы "Коринтиас" (Санта-Паулу, 1966), "Фламенго" Рио-де-Жанейро, 1968-69), "Олария" (Рио-де-Жанейро, 1972). После окончания футбольной карьеры работать тренером не смог. Был очень одинок, несмотря на то, что имел 11 дочерей. Не случайно последняя книга о нем, вышедшая после его смерти, называется "Одинокая звезда" (Р. Кастро, 1995).

ويكيبيديا

Relação reflexiva

Na matemática, uma relação reflexiva é uma relação binária R {\displaystyle R} sobre um conjunto X {\displaystyle X} em que cada elemento de X {\displaystyle X} está relacionado a si mesmo. Formalmente, isso pode ser escrito x X : x R x {\displaystyle \forall x\in X:xRx} .

Um exemplo de uma relação reflexiva é a relação "é igual a" no conjunto de números reais, já que todo número real é igual a ele mesmo. Diz-se que uma relação reflexiva tem a propriedade reflexiva ou é possuidora de reflexividade. Juntamente com a simetria e a transitividade, a reflexividade é uma das três propriedades que definem as relações de equivalência.