W Cayley Hamilton - definition. What is W Cayley Hamilton
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

THEOREM
Cayley-Hamilton Theorem; Cayley-Hamilton theorem; Hamilton's Theorem; Cayley-Hamilton; Caley hamilton theorem; Cayley hamiltion theorem; Caley-hamilton theorem; Cayley-hamilton theorem; Cayley Hamilton; Hamilton-Cayley theorem; Cayley hamilton theorem; Cayley–Hamilton Theorem
  • ''n'' × ''n''}} matrices, Cayley stated “..., I have not thought it necessary to undertake the labor of a formal proof of the theorem in the general case of a matrix of any degree”.
  • [[Ferdinand Georg Frobenius]] (1849–1917), German mathematician. His main interests were [[elliptic function]]s, [[differential equation]]s, and later [[group theory]].<br/>In 1878 he gave the first full proof of the Cayley&ndash;Hamilton theorem.<ref name="Frobenius 1878"/>
  • [[William Rowan Hamilton]] (1805–1865), Irish physicist, astronomer, and mathematician, first foreign member of the American [[National Academy of Sciences]]. While maintaining an opposing position about how [[geometry]] should be studied, Hamilton always remained on the best terms with Cayley.<ref name=Crilly_1/><br/><br/>Hamilton proved that for a linear function of [[quaternion]]s there exists a certain equation, depending on the linear function, that is satisfied by the linear function itself.<ref name=Hamilton_1864a/><ref name=Hamilton_1864b/><ref name=Hamilton_1862/>

Neville William Cayley         
  • Postcard from artwork by Neville W. Cayley, c. 1903
AUSTRALIAN AUTHOR, ARTIST AND ORNITHOLOGIST
Neville W. Cayley; N. W. Cayley
Neville William Cayley (1886–1950) was a celebrated Australian author, artist and ornithologist. He produced Australia's first comprehensive bird field guide What Bird is That?.
CayleyHamilton theorem         
In linear algebra, the CayleyHamilton theorem (named after the mathematicians Arthur Cayley and William Rowan Hamilton) states that every square matrix over a commutative ring (such as the real or complex numbers or the integers) satisfies its own characteristic equation.
W. Cayley Hamilton         
CANADIAN LAWYER
William Cayley Hamilton ( – October 2, 1901) was a Canadian barrister and politician. He was mayor of Regina, Saskatchewan in 1888.

ويكيبيديا

Cayley–Hamilton theorem

In linear algebra, the Cayley–Hamilton theorem (named after the mathematicians Arthur Cayley and William Rowan Hamilton) states that every square matrix over a commutative ring (such as the real or complex numbers or the integers) satisfies its own characteristic equation.

If A is a given n × n matrix and In  is the n × n identity matrix, then the characteristic polynomial of A is defined as p A ( λ ) = det ( λ I n A ) {\displaystyle p_{A}(\lambda )=\det(\lambda I_{n}-A)} , where det is the determinant operation and λ is a variable for a scalar element of the base ring. Since the entries of the matrix ( λ I n A ) {\displaystyle (\lambda I_{n}-A)} are (linear or constant) polynomials in λ, the determinant is also a degree-n monic polynomial in λ, p A ( λ ) = λ n + c n 1 λ n 1 + + c 1 λ + c 0   . {\displaystyle p_{A}(\lambda )=\lambda ^{n}+c_{n-1}\lambda ^{n-1}+\cdots +c_{1}\lambda +c_{0}~.} One can create an analogous polynomial p A ( A ) {\displaystyle p_{A}(A)} in the matrix A instead of the scalar variable λ, defined as p A ( A ) = A n + c n 1 A n 1 + + c 1 A + c 0 I n   . {\displaystyle p_{A}(A)=A^{n}+c_{n-1}A^{n-1}+\cdots +c_{1}A+c_{0}I_{n}~.} The Cayley–Hamilton theorem states that this polynomial expression is equal to the zero matrix, which is to say that p A ( A ) = 0 {\displaystyle p_{A}(A)=\mathbf {0} } . The theorem allows An to be expressed as a linear combination of the lower matrix powers of A. When the ring is a field, the Cayley–Hamilton theorem is equivalent to the statement that the minimal polynomial of a square matrix divides its characteristic polynomial. The theorem was first proven in 1853 in terms of inverses of linear functions of quaternions, a non-commutative ring, by Hamilton. This corresponds to the special case of certain 4 × 4 real or 2 × 2 complex matrices. The theorem holds for general quaternionic matrices. Cayley in 1858 stated it for 3 × 3 and smaller matrices, but only published a proof for the 2 × 2 case. The general case was first proved by Ferdinand Frobenius in 1878.