back clip - definition. What is back clip
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:     

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

COORDINATE SYSTEM USED IN COMPUTER GRAPHICS
Clip Space; Clip space

Clip (firearms)         
  • An [[M1 Garand]] ''en bloc'' clip (left) compared to an [[SKS]] stripper clip (right)
  • Loading a [[7.92×57mm Mauser]] [[Karabiner 98k]] rifle with a five-round stripper clip.
  • Steyr M95]] carbine.
  • M1917]] revolvers. The [[.45 Auto Rim]] cartridge may be used in a revolver's cylinders without the clips.
USED TO HOLD AMMUNITION FOR FIREARMS
Half-moon clips; Half moon clip; Half moon clips; En-bloc clip; Ammunition clip; Ammo clip; Gun clip; Clip (ammunition)
A clip is a device that is used to store multiple rounds of ammunition together as a unit for insertion into the magazine or cylinder of a firearm. This speeds up the process by loading the firearm with several rounds at once, rather than one at a time ('loose rounds').
alligator clip         
  • Crocodile clips, also called automotive clips, on a set of [[jumper cable]]s
  • A crocodile clip manufactured by Mueller Electric. This device is a variation of Mueller's original crocodile clip design, which was invented by Ralph Mueller in the early 1900s.
METAL CLIP WITH LONG, SERRATED JAWS, USED FOR TEMPORARY ELECTRICAL CONNECTION
Alligator clip; Alligator clips; Crocodile clips; Crocodile clamp; Automotive clip; Electrical clip; Spring clip; Alligator clamp; Croc clip
¦ noun chiefly N. Amer. another term for crocodile clip.
clip art         
  • A [[MacPaint]] illustration of [[Bill Atkinson]], the software's creator
  • Boy and Turtle clip art, from Openclipart
  • Clip art of a coffee shared under CC-BY-3.0 license
GRAPHIC ILLUSTRATIONS CREATED FOR REUSE BY OTHERS
Clip-art; Clipart; Clip Art; Free clipart; Free clip art; Microsoft clip art; ClipArt; ClickArt
¦ noun pre-drawn pictures and symbols provided with word-processing software and drawing packages.

ويكيبيديا

Clip coordinates

The clip coordinate system is a homogeneous coordinate system in the graphics pipeline that is used for clipping. In OpenGL, clip coordinates are positioned in the pipeline just after view coordinates and just before normalized device coordinates (NDC).

Objects' coordinates are transformed via a projection transformation into clip coordinates, at which point it may be efficiently determined on an object-by-object basis which portions of the objects will be visible to the user. In the context of OpenGL or Vulkan, the result of executing vertex processing shaders is considered to be in clip coordinates. All coordinates may then be divided by the w {\displaystyle w} component, (the fourth component in homogeneous coordinates ( x c , y c , z c , w c ) {\displaystyle (x_{c},y_{c},z_{c},w_{c})} , see below) in what is called the perspective division. This transformation puts the objects into normalized device coordinates.

More concretely, a point in clip coordinates is represented with four components,

( x c y c z c w c ) , {\displaystyle {\begin{pmatrix}x_{c}\\y_{c}\\z_{c}\\w_{c}\end{pmatrix}},}

and the following equality defines the relationship between the normalized device coordinates x n {\displaystyle x_{n}} , y n {\displaystyle y_{n}} and z n {\displaystyle z_{n}} and clip coordinates,

( x n y n z n ) = ( x c / w c y c / w c z c / w c ) . {\displaystyle {\begin{pmatrix}x_{n}\\y_{n}\\z_{n}\end{pmatrix}}={\begin{pmatrix}x_{c}/w_{c}\\y_{c}/w_{c}\\z_{c}/w_{c}\end{pmatrix}}.}

Clip coordinates are convenient for clipping algorithms as points can be checked if their coordinates are outside of the viewing volume. For example, a coordinate x c {\displaystyle x_{c}} for a point is within the viewing volume if it satisfies the inequality w c x c w c {\displaystyle -w_{c}\leq x_{c}\leq w_{c}} . Polygons with vertices outside of the viewing volume may be clipped to fit within the volume.