digitally signed message - definition. What is digitally signed message
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

MATHEMATICAL SCHEME FOR VERIFYING THE AUTHENTICITY OF DIGITAL DOCUMENTS
Digital signatures; Digitally Signed; Cryptographic signature; Digitally signed; Digital Signature; Signed code; Digital signiture; Digital signature scheme; Adaptive chosen-message attack; Adaptive chosen message attack; Digital signing; Signature (cryptography); Signature (computers); Signature (computing); E-imza; Signature scheme; .sign; Digital key; Digital keys; 🔏; Puncturable signature; Puncturable digital signature; Digitally-signed; Cryptographic signing; Applications of digital signatures
  • Alice signs a message—"Hello Bob!"—by appending a signature computed from the message and her private key.

Bob receives both the message and signature. He uses Alice's public key to verify the authenticity of the signed message.

message passing         
MECHANISM FOR INTERPROCESS COMMUNICATION
Message passing programming; Message Passing; Message-based protocol; Message-passing; Message-based; Message (object-oriented programming); Asynchronous message passing; Synchronous message passing
One of the two techniques for communicating between parallel processes (the other being shared memory). A common use of message passing is for communication in a parallel computer. A process running on one processor may send a message to a process running on the same processor or another. The actual transmission of the message is usually handled by the run-time support of the language in which the processes are written, or by the operating system. Message passing scales better than shared memory, which is generally used in computers with relatively few processors. This is because the total communications bandwidth usually increases with the number of processors. A message passing system provides primitives for sending and receiving messages. These primitives may by either synchronous or asynchronous or both. A synchronous send will not complete (will not allow the sender to proceed) until the receiving process has received the message. This allows the sender to know whether the message was received successfully or not (like when you speak to someone on the telephone). An asynchronous send simply queues the message for transmission without waiting for it to be received (like posting a letter). A synchronous receive primitive will wait until there is a message to read whereas an asynchronous receive will return immediately, either with a message or to say that no message has arrived. Messages may be sent to a named process or to a named mailbox which may be readable by one or many processes. Transmission involves determining the location of the recipient and then choosing a route to reach that location. The message may be transmitted in one go or may be split into packets which are transmitted independently (e.g. using wormhole routing) and reassembled at the receiver. The message passing system must ensure that sufficient memory is available to buffer the message at its destination and at intermediate nodes. Messages may be typed or untyped at the programming language level. They may have a priority, allowing the receiver to read the highest priority messages first. Some message passing computers are the {MIT J-Machine (http://ai.mit.edu/projects/cva/cva_j_machine.html)}, the {Illinois Concert Project (http://www-csag.cs.uiuc.edu/projects/concert.html)} and transputer-based systems. Object-oriented programming uses message passing between objects as a metaphor for procedure call. (1994-11-11)
Signed number representations         
ENCODING OF NEGATIVE NUMBERS IN BINARY NUMBER SYSTEMS
Negative and non-negative in binary; Sign-magnitude; Sign and magnitude; Sign-and-magnitude; Signed number representation; Signed integer representations; Signed integer representation; Signed magnitude; Sign magnitude; End-around carry; Sign and mantissa; Excess-128; Excess 128; Negative binary numbers
In computing, signed number representations are required to encode negative numbers in binary number systems.
Private message         
MODE OF ELECTRONIC COMMUNICATION
Private messaging; Message (direct); Private Message; Private Messaging; YGPM; Direct message; Personal message
In computing, a private message, personal message, or direct message (abbreviated as PM or DM) refers to a private communication sent or received by a user of a private communication channel on any given platform. Unlike public posts, PMs are only viewable by the participants.

ويكيبيديا

Digital signature

A digital signature is a mathematical scheme for verifying the authenticity of digital messages or documents. A valid digital signature, where the prerequisites are satisfied, gives a recipient very high confidence that the message was created by a known sender (authenticity), and that the message was not altered in transit (integrity).

Digital signatures are a standard element of most cryptographic protocol suites, and are commonly used for software distribution, financial transactions, contract management software, and in other cases where it is important to detect forgery or tampering.

Digital signatures are often used to implement electronic signatures, which includes any electronic data that carries the intent of a signature, but not all electronic signatures use digital signatures. Electronic signatures have legal significance in some countries, including Canada, South Africa, the United States, Algeria, Turkey, India, Brazil, Indonesia, Mexico, Saudi Arabia, Uruguay, Switzerland, Chile and the countries of the European Union.

Digital signatures employ asymmetric cryptography. In many instances, they provide a layer of validation and security to messages sent through a non-secure channel: Properly implemented, a digital signature gives the receiver reason to believe the message was sent by the claimed sender. Digital signatures are equivalent to traditional handwritten signatures in many respects, but properly implemented digital signatures are more difficult to forge than the handwritten type. Digital signature schemes, in the sense used here, are cryptographically based, and must be implemented properly to be effective. They can also provide non-repudiation, meaning that the signer cannot successfully claim they did not sign a message, while also claiming their private key remains secret. Further, some non-repudiation schemes offer a timestamp for the digital signature, so that even if the private key is exposed, the signature is valid. Digitally signed messages may be anything representable as a bitstring: examples include electronic mail, contracts, or a message sent via some other cryptographic protocol.