encryption chip - definition. What is encryption chip
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

MOLECULAR BIOLOGY METHOD
ChIP-chip; ChIP-Chip; Chip on chip
  • Workflow overview of the dry-lab portion of a ChIP-on-chip experiment.
  • Workflow overview of the wet-lab portion of a ChIP-on-chip experiment.
  • Workflow overview of a ChIP-on-chip experiment.

Chip (name)         
GIVEN NAME
Chip (nickname)
Chip is an English given name and nickname in the United States, which is often a diminutive form of Charles or Christopher. Notable people referred to by this name include the following:
Deniable encryption         
ENCRYPTION TECHNIQUE
Deniable Encryption
In cryptography and steganography, plausibly deniable encryption describes encryption techniques where the existence of an encrypted file or message is deniable in the sense that an adversary cannot prove that the plaintext data exists.See http://www.
Identity-based encryption         
  • ID Based Encryption: Offline and Online Steps
Identity based encryption; ID-based encryption; Identity-Based Encryption; Hierarchical identity-based encryption
ID-based encryption, or identity-based encryption (IBE), is an important primitive of ID-based cryptography. As such it is a type of public-key encryption in which the public key of a user is some unique information about the identity of the user (e.

ويكيبيديا

ChIP-on-chip

ChIP-on-chip (also known as ChIP-chip) is a technology that combines chromatin immunoprecipitation ('ChIP') with DNA microarray ("chip"). Like regular ChIP, ChIP-on-chip is used to investigate interactions between proteins and DNA in vivo. Specifically, it allows the identification of the cistrome, the sum of binding sites, for DNA-binding proteins on a genome-wide basis. Whole-genome analysis can be performed to determine the locations of binding sites for almost any protein of interest. As the name of the technique suggests, such proteins are generally those operating in the context of chromatin. The most prominent representatives of this class are transcription factors, replication-related proteins, like origin recognition complex protein (ORC), histones, their variants, and histone modifications.

The goal of ChIP-on-chip is to locate protein binding sites that may help identify functional elements in the genome. For example, in the case of a transcription factor as a protein of interest, one can determine its transcription factor binding sites throughout the genome. Other proteins allow the identification of promoter regions, enhancers, repressors and silencing elements, insulators, boundary elements, and sequences that control DNA replication. If histones are subject of interest, it is believed that the distribution of modifications and their localizations may offer new insights into the mechanisms of regulation.

One of the long-term goals ChIP-on-chip was designed for is to establish a catalogue of (selected) organisms that lists all protein-DNA interactions under various physiological conditions. This knowledge would ultimately help in the understanding of the machinery behind gene regulation, cell proliferation, and disease progression. Hence, ChIP-on-chip offers both potential to complement our knowledge about the orchestration of the genome on the nucleotide level and information on higher levels of information and regulation as it is propagated by research on epigenetics.