invariant procedure - definition. What is invariant procedure
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:     

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

Positive invariance; Positively invariant; Positive invariant; Positive invariant set

Invariant (physics)         
IN MATHEMATICS AND THEORETICAL PHYSICS, PROPERTY OF A SYSTEM WHICH REMAINS UNCHANGED UNDER SOME TRANSFORMATION
Invariance (physics); Invariant quantity
In theoretical physics, an invariant is an observable of a physical system which remains unchanged under some transformation. Invariance, as a broader term, also applies to the no change of form of physical laws under a transformation, and is closer in scope to the mathematical definition.
Invariant (mathematics)         
  • operation]] denoted by <math>\circ</math> is the [[function composition]].
PROPERTY OF MATHEMATICAL OBJECTS THAT REMAINS UNCHANGED FOR TRANSFORMATIONS APPLIED TO THE OBJECTS
Invariant (computer science); Invariance (mathematics); Coordinate system invariant; Invariant set; Coordinate invariance; Coordinate system invariance; Programming invariant
In mathematics, an invariant is a property of a mathematical object (or a class of mathematical objects) which remains unchanged after operations or transformations of a certain type are applied to the objects. The particular class of objects and type of transformations are usually indicated by the context in which the term is used.
U-invariant         
MATHEMATICAL TERM
Universal invariant; General u-invariant
In mathematics, the universal invariant or u-invariant of a field describes the structure of quadratic forms over the field.

ويكيبيديا

Positively invariant set

In mathematical analysis, a positively (or positive) invariant set is a set with the following properties:

Suppose x ˙ = f ( x ) {\displaystyle {\dot {x}}=f(x)} is a dynamical system, x ( t , x 0 ) {\displaystyle x(t,x_{0})} is a trajectory, and x 0 {\displaystyle x_{0}} is the initial point. Let O := { x R n φ ( x ) = 0 } {\displaystyle {\mathcal {O}}:=\left\lbrace x\in \mathbb {R} ^{n}\mid \varphi (x)=0\right\rbrace } where φ {\displaystyle \varphi } is a real-valued function. The set O {\displaystyle {\mathcal {O}}} is said to be positively invariant if x 0 O {\displaystyle x_{0}\in {\mathcal {O}}} implies that x ( t , x 0 ) O     t 0 {\displaystyle x(t,x_{0})\in {\mathcal {O}}\ \forall \ t\geq 0}

In other words, once a trajectory of the system enters O {\displaystyle {\mathcal {O}}} , it will never leave it again.