multiply$50864$ - definition. What is multiply$50864$
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:     

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

LORENTZIAN MANIFOLD THAT DOES NOT CONTAIN A CLOSED TIMELIKE CURVE
Timelike multiply connected

Timelike simply connected         
Suppose a Lorentzian manifold contains a closed timelike curve (CTC). No CTC can be continuously deformed as a CTC (is timelike homotopic) to a point, as that point would not be causally well behaved.
History of spectroscopy         
  • Light separated into a spectrum by refraction through glass prism. Colour dispersion angles exaggerated for visualisation.
ASPECT OF HISTORY
Spectroscopy of multiply ionized atoms; User:Koneya/sandbox; Draft:Spectroscopy of Multiply Ionized Atoms; Spectroscopy of Multiply Ionized Atoms
Modern spectroscopy in the Western world started in the 17th century. New designs in optics, specifically prisms, enabled systematic observations of the solar spectrum.
multiplication sign         
MATHEMATICAL SYMBOL
Multiplication symbol; ✖; ×; Multiply sign; Times sign; Times symbol; Times (glyph); Multiplication x; ⊠; ⨉; U+00D7; Times (symbol)
(multiplication signs)
A multiplication sign is the sign x which is put between two numbers to show that they are being multiplied.
N-COUNT

ويكيبيديا

Timelike simply connected

Suppose a Lorentzian manifold contains a closed timelike curve (CTC). No CTC can be continuously deformed as a CTC (is timelike homotopic) to a point, as that point would not be causally well behaved. Therefore, any Lorentzian manifold containing a CTC is said to be timelike multiply connected. A Lorentzian manifold that does not contain a CTC is said to be timelike simply connected.

Any Lorentzian manifold which is timelike multiply connected has a diffeomorphic universal covering space which is timelike simply connected. For instance, a three-sphere with a Lorentzian metric is timelike multiply connected, (because any compact Lorentzian manifold contains a CTC), but has a diffeomorphic universal covering space which contains no CTC (and is therefore not compact). By contrast, a three-sphere with the standard metric is simply connected, and is therefore its own universal cover.