probabilistic decidability - definition. What is probabilistic decidability
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:     

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

NONCONSTRUCTIVE METHOD FOR MATHEMATICAL PROOFS
Probabilistic proof; Erdős magic; Probabilistic combinatorics; Probabilistic methods

Probabilistic programming         
PROGRAMMING LANGUAGE DESIGNED TO DESCRIBE PROBABILISTIC MODELS AND THEN PERFORM INFERENCE IN THOSE MODELS
Probabilistic relational programming language; List of probabilistic programming languages; Probabilistic programming language; Turing.jl; Turing (probabilistic programming); Applications of probabilistic programming
Probabilistic programming (PP) is a programming paradigm in which probabilistic models are specified and inference for these models is performed automatically.
Probabilistic logic         
USE OF PROBABILITY AND LOGIC TO DEAL WITH UNCERTAIN SITUATIONS
Probabilistic reasoning; Probability logic; Probabilistic Logic; Non-Axiomatic Reasoning System
Probabilistic logic (also probability logic and probabilistic reasoning) involves the use of probability and logic to deal with uncertain situations. Probabilistic logic extends traditional logic truth tables with probabilistic expressions.
Decidability (logic)         
PROPERTY OF THEORIES THAT HAVE COMPUTABLE MEMBERSHIP
Semidecidable; Decidability (Logic); Semidecidability; Essentially undecidable; Decidability (computer science); Decidable (logic); Semi-decidability
In logic, a true/false decision problem is decidable if there exists an effective method for deriving the correct answer. Zeroth-order logic (propositional logic) is decidable, whereas first-order and higher-order logic are not.

ويكيبيديا

Probabilistic method

In mathematics, the probabilistic method is a nonconstructive method, primarily used in combinatorics and pioneered by Paul Erdős, for proving the existence of a prescribed kind of mathematical object. It works by showing that if one randomly chooses objects from a specified class, the probability that the result is of the prescribed kind is strictly greater than zero. Although the proof uses probability, the final conclusion is determined for certain, without any possible error.

This method has now been applied to other areas of mathematics such as number theory, linear algebra, and real analysis, as well as in computer science (e.g. randomized rounding), and information theory.