quicksort$550814$ - definition. What is quicksort$550814$
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

DIVIDE AND CONQUER SORTING ALGORITHM
Quick sort; QuickSort; Quick Sort; Randomized quicksort; Hoaresort; Balanced quicksort; External quicksort; Quick3; Quick3 sort; Parallel quicksort; Partition-exchange sort; Partition exchange sort
  • ''O''(''n''<sup>2</sup>)}}) on ''already sorted'' arrays, or arrays of identical elements. Since sub-arrays of sorted / identical elements crop up a lot towards the end of a sorting procedure on a large set, versions of the quicksort algorithm that choose the pivot as the middle element run much more quickly than the algorithm described in this diagram on large sets of numbers.
  • An animated demonstration of Quicksort using Hoare's partition scheme. The red outlines show the positions of the left and right pointers (<code>i</code> and <code>j</code> respectively), the black outlines show the positions of the sorted elements, and the filled black square shows the value that is being compared to (<code>pivot</code>).

Quicksort         
A sorting algorithm with O(n log n) average time complexity. One element, x of the list to be sorted is chosen and the other elements are split into those elements less than x and those greater than or equal to x. These two lists are then sorted recursively using the same algorithm until there is only one element in each list, at which point the sublists are recursively recombined in order yielding the sorted list. This can be written in Haskell: qsort :: Ord a => [a] -> [a] qsort [] = [] qsort (x:xs) = qsort [ u | u<-xs, u<x ] ++ [ x ] ++ qsort [ u | u<-xs, u>=x ] [Mark Jones, Gofer prelude.]
Partial sorting         
Quickselsort; Partial sort; Partial quicksort
In computer science, partial sorting is a relaxed variant of the sorting problem. Total sorting is the problem of returning a list of items such that its elements all appear in order, while partial sorting is returning a list of the k smallest (or k largest) elements in order.

ويكيبيديا

Quicksort

Quicksort is an efficient, general-purpose sorting algorithm. Quicksort was developed by British computer scientist Tony Hoare in 1959 and published in 1961. It is still a commonly used algorithm for sorting. Overall, it is slightly faster than merge sort and heapsort for randomized data, particularly on larger distributions.

Quicksort is a divide-and-conquer algorithm. It works by selecting a 'pivot' element from the array and partitioning the other elements into two sub-arrays, according to whether they are less than or greater than the pivot. For this reason, it is sometimes called partition-exchange sort. The sub-arrays are then sorted recursively. This can be done in-place, requiring small additional amounts of memory to perform the sorting.

Quicksort is a comparison sort, meaning that it can sort items of any type for which a "less-than" relation (formally, a total order) is defined. Most implementations of quicksort are not stable, meaning that the relative order of equal sort items is not preserved.

Mathematical analysis of quicksort shows that, on average, the algorithm takes O ( n log n ) {\displaystyle O(n\log {n})} comparisons to sort n items. In the worst case, it makes O ( n 2 ) {\displaystyle O(n^{2})} comparisons.