The term "superregular measure" can be categorized as a noun phrase in mathematics, specifically in the context of measure theory.
/ˌsuːpərˈrɛɡjʊlər ˈmɛʒər/
"Superregular measure" refers to a specific type of measure in mathematics, particularly in measure theory. This concept often deals with measures that have properties of regularity in terms of how sets are approximated. It is not a common term used in everyday language or even in all branches of mathematics, but it might appear in advanced discussions on measure theory, integration, or probability.
The term is relatively niche, primarily used in academic texts and discussions related to advanced mathematical analysis. Its frequency of use is low in common conversation but more prevalent in written academic and mathematical discourse.
Due to its specialized nature, "superregular measure" is not widely used outside of mathematical discussions. It is primarily encountered in scholarly articles and textbooks.
"في دراسة الاحتمالات، يمكن أن يوفر قياس فوق العادي خصائص تقارب أفضل."
"The researchers proved that the space supports a superregular measure which is essential for their analysis."
نظرًا لكون "superregular measure" مصطلحًا تقنيًا للغاية، فلا توجد تعبيرات اصطلاحية شائعة تستخدمه بشكل مستمر مثل الكلمات المستخدمة في اللغة اليومية. يمكن ومع ذلك تقديم بعض الجمل التي تلقي الضوء على استخدامه في سياق أكاديمي:
"لضمان قوة نتائجنا، طبقنا قياسًا فوق العادي على كل مجموعة فرعية."
"The application of superregular measures simplifies the complexity of the analysis required."
"تطبيق قياسات فوق العادية يبسط تعقيد التحليل المطلوب."
"In optimal set theory, the existence of a superregular measure is a prerequisite for certain proofs."
كلمة "superregular" تتكون من البادئة "super-" التي تعني "فوق" أو "أكثر من" وكلمة "regular" التي تعني "عادي" أو "منتظم". بينما "measure" تأتي من الجذر اللاتيني "metri," الذي يعني "قياس."
Standard measure
متضادات: