HCS clustering algorithm - Definition. Was ist HCS clustering algorithm
DICLIB.COM
KI-basierte Sprachtools
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist HCS clustering algorithm - definition


HCS clustering algorithm         
The HCS (Highly Connected Subgraphs) clustering algorithm (also known as the HCS algorithm, and other names such as Highly Connected Clusters/Components/Kernels) is an algorithm based on graph connectivity for cluster analysis. It works by representing the similarity data in a similarity graph, and then finding all the highly connected subgraphs.
Canopy clustering algorithm         
The canopy clustering algorithm is an unsupervised pre-clustering algorithm introduced by Andrew McCallum, Kamal Nigam and Lyle Ungar in 2000. It is often used as preprocessing step for the K-means algorithm or the Hierarchical clustering algorithm.
CURE algorithm         
DATA CLUSTERING ALGORITHM
Cure data clustering; CURE data clustering algorithm
CURE (Clustering Using REpresentatives) is an efficient data clustering algorithm for large databases. Compared with K-means clustering it is more robust to outliers and able to identify clusters having non-spherical shapes and size variances.