Q-Gaussian process - Definition. Was ist Q-Gaussian process
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Q-Gaussian process - definition


Q-Gaussian process         
q-Gaussian processes are deformations of the usual Gaussian distribution. There are several different versions of this; here we treat a multivariate deformation, also addressed as q-Gaussian process, arising from free probability theory and corresponding to deformations of the canonical commutation relations.
Gaussian process         
  • Autocorrelation of a random lacunary Fourier series
  • Gaussian Process Regression (prediction) with a squared exponential kernel. Left plot are draws from the prior function distribution. Middle are draws from the posterior. Right is mean prediction with one standard deviation shaded.
  • The effect of choosing different kernels on the prior function distribution of the Gaussian process. Left is a squared exponential kernel. Middle is Brownian. Right is quadratic.
STOCHASTIC PROCESS SUCH THAT EVERY FINITE COLLECTION OF RANDOM VARIABLES HAS A MULTIVARIATE NORMAL DISTRIBUTION
Gaussian stochastic process; Gaussian processes; Gaussian Process; Gaussian Processes; Applications of Gaussian processes; Bayesian Kernel Ridge Regression
In probability theory and statistics, a Gaussian process is a stochastic process (a collection of random variables indexed by time or space), such that every finite collection of those random variables has a multivariate normal distribution, i.e.
Gaussian binomial coefficient         
FAMILY OF POLYNOMIALS
Q-binomial coefficient; Q-binomial; Gaussian coefficient; Gaussian binomial; Q-binomial theorem; Gaussian polynomial; Gaussian polynomials; Gaussian binomial coefficients; Q-binomial coefficients
In mathematics, the Gaussian binomial coefficients (also called Gaussian coefficients, Gaussian polynomials, or q-binomial coefficients) are q-analogs of the binomial coefficients. The Gaussian binomial coefficient, written as \binom nk_q or \begin{bmatrix}n\\ k\end{bmatrix}_q, is a polynomial in q with integer coefficients, whose value when q is set to a prime power counts the number of subspaces of dimension k in a vector space of dimension n over a finite field with q elements.