characteristic function - Definition. Was ist characteristic function
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist characteristic function - definition

WIKIMEDIA DISAMBIGUATION PAGE
Characteristic map; Characteristic mapping; Characteristic functions

characteristic function         
<mathematics> The characteristic function of set returns True if its argument is an element of the set and False otherwise. (1995-04-13)
Characteristic function (probability theory)         
  • Pólya’s theorem can be used to construct an example of two random variables whose characteristic functions coincide over a finite interval but are different elsewhere.
FUNCTION ASSOCIATED TO A REAL-VALUED RANDOM VARIABLE THAT COMPLETELY DEFINES ITS PROBABILITY DISTRIBUTION; THE FOURIER TRANSFORM OF THE PROBABILITY DENSITY FUNCTION
Characteristic function (probability)
In probability theory and statistics, the characteristic function of any real-valued random variable completely defines its probability distribution. If a random variable admits a probability density function, then the characteristic function is the Fourier transform of the probability density function.
membership function         
FUNCTION THAT RETURNS 1 IF AN ELEMENT IS PRESENT IN A SPECIFIED SUBSET AND 0 IF ABSENT; NATURALLY ISOMORPHIC WITH A SET'S SUBSETS
Representing function; Characteristic sequence; Characteristic function of a set; Membership function; Indicator random variable; Indicator notation; Indicator functions

Wikipedia

Characteristic function

In mathematics, the term "characteristic function" can refer to any of several distinct concepts:

  • The indicator function of a subset, that is the function
1 A : X { 0 , 1 } , {\displaystyle \mathbf {1} _{A}\colon X\to \{0,1\},}
which for a given subset A of X, has value 1 at points of A and 0 at points of X − A.
  • There is an indicator function for affine varieties over a finite field: given a finite set of functions f α F q [ x 1 , , x n ] {\displaystyle f_{\alpha }\in \mathbb {F} _{q}[x_{1},\ldots ,x_{n}]} let V = { x F q n : f α ( x ) = 0 } {\displaystyle V=\left\{x\in \mathbb {F} _{q}^{n}:f_{\alpha }(x)=0\right\}} be their vanishing locus. Then, the function P ( x ) = ( 1 f α ( x ) q 1 ) {\textstyle P(x)=\prod \left(1-f_{\alpha }(x)^{q-1}\right)} acts as an indicator function for V {\displaystyle V} . If x V {\displaystyle x\in V} then P ( x ) = 1 {\displaystyle P(x)=1} , otherwise, for some f α {\displaystyle f_{\alpha }} , we have f α ( x ) 0 {\displaystyle f_{\alpha }(x)\neq 0} , which implies that f α ( x ) q 1 = 1 {\displaystyle f_{\alpha }(x)^{q-1}=1} , hence P ( x ) = 0 {\displaystyle P(x)=0} .
  • The characteristic function in convex analysis, closely related to the indicator function of a set:
    χ A ( x ) := { 0 , x A ; + , x A . {\displaystyle \chi _{A}(x):={\begin{cases}0,&x\in A;\\+\infty ,&x\not \in A.\end{cases}}}
  • In probability theory, the characteristic function of any probability distribution on the real line is given by the following formula, where X is any random variable with the distribution in question:
    φ X ( t ) = E ( e i t X ) , {\displaystyle \varphi _{X}(t)=\operatorname {E} \left(e^{itX}\right),}
    where E {\displaystyle \operatorname {E} } denotes expected value. For multivariate distributions, the product tX is replaced by a scalar product of vectors.
  • The characteristic function of a cooperative game in game theory.
  • The characteristic polynomial in linear algebra.
  • The characteristic state function in statistical mechanics.
  • The Euler characteristic, a topological invariant.
  • The receiver operating characteristic in statistical decision theory.
  • The point characteristic function in statistics.