finite quantification - Definition. Was ist finite quantification
DICLIB.COM
KI-basierte Sprachtools
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist finite quantification - definition

Branching quantification; Henkin quantifier; Partially ordered quantification; Branched quantification

Finite morphism         
In algebraic geometry, a finite morphism between two affine varieties X, Y is a dense regular map which induces isomorphic inclusion k\left[Y\right]\hookrightarrow k\left[X\right] between their coordinate rings, such that k\left[X\right] is integral over k\left[Y\right]. This definition can be extended to the quasi-projective varieties, such that a regular map f\colon X\to Y between quasiprojective varieties is finite if any point like y\in Y has an affine neighbourhood V such that U=f^{-1}(V) is affine and f\colon U\to V is a finite map (in view of the previous definition, because it is between affine varieties).
Finite element method         
  • A function in <math>H_0^1,</math> with zero values at the endpoints (blue), and a piecewise linear approximation (red)
  • (c) The computed solution, <math>u(x, y)=1-x^2-y^2.</math>
  • (b) The [[sparse matrix]] ''L'' of the discretized linear system
  • Solving the two-dimensional problem <math>u_{xx}+u_{yy}=-4</math> in the disk centered at the origin and radius 1, with zero boundary conditions.<br />(a) The triangulation.
  • url=https://ris.utwente.nl/ws/files/6153316/CMBBE2014-Hamid-Submitted.pdf}}</ref>
  • A piecewise linear function in two dimensions
  • alt=
  • alt=
NUMERICAL METHOD FOR SOLVING PHYSICAL OR ENGINEERING PROBLEMS
Finite element analysis; Finite Element Analysis; Finite elements; Finite element; Finite Element Method; Engineering treatment of the finite element method; Finite element solver; Finite element meshing; Finite element problem; Engineering treatment of the Finite Element Method; Finite element methods; Finite difference method based on variation principle; Finite elements analysis; Finite-element method; Finite-element analysis; Finite-element methods; Nonlinear finite element analysis
The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential.
Quantification (machine learning)         
MACHINE LEARNING PRACTICE OF SUPERVISED LEARNING
Binary quantification; Multiclass quantification; Ordinal quantification
In machine learning and data mining, quantification (variously called learning to quantify, or supervised prevalence estimation, or class prior estimation) is the task of using supervised learning in order to train models (quantifiers) that estimate the relative frequencies (also known as prevalence values) of the classes of interest in a sample of unlabelled data items.

Wikipedia

Branching quantifier

In logic a branching quantifier, also called a Henkin quantifier, finite partially ordered quantifier or even nonlinear quantifier, is a partial ordering

Q x 1 Q x n {\displaystyle \langle Qx_{1}\dots Qx_{n}\rangle }

of quantifiers for Q ∈ {∀,∃}. It is a special case of generalized quantifier. In classical logic, quantifier prefixes are linearly ordered such that the value of a variable ym bound by a quantifier Qm depends on the value of the variables

y1, ..., ym−1

bound by quantifiers

Qy1, ..., Qym−1

preceding Qm. In a logic with (finite) partially ordered quantification this is not in general the case.

Branching quantification first appeared in a 1959 conference paper of Leon Henkin. Systems of partially ordered quantification are intermediate in strength between first-order logic and second-order logic. They are being used as a basis for Hintikka's and Gabriel Sandu's independence-friendly logic.