nabla operator - Definition. Was ist nabla operator
DICLIB.COM
KI-basierte Sprachtools
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist nabla operator - definition

VECTOR'S DIFFERENTIAL OPERATOR
Nabla constant; Atled; Nabla operator; Del operator; Vector differential; Vector differential operator; Gradient operator; Divergence operator
  • DCG chart:

A simple chart depicting all rules pertaining to second derivatives.
D, C, G, L and CC stand for divergence, curl, gradient, Laplacian and curl of curl, respectively.

Arrows indicate existence of second derivatives. Blue circle in the middle represents curl of curl, whereas the other two red circles (dashed) mean that DD and GG do not exist.
  • Del operator,<br />represented by<br />the [[nabla symbol]]

Del         
·noun Share; portion; part.
Del         
Del, or nabla, is an operator used in mathematics (particularly in vector calculus) as a vector differential operator, usually represented by the nabla symbol ∇. When applied to a function defined on a one-dimensional domain, it denotes the standard derivative of the function as defined in calculus.
Transfer operator         
PUSHFORWARD ON THE SPACE OF MEASURABLE FUNCTIONS
Ruelle operator; Perron-Frobenius operator; Perron-Frobenius Operator; Frobenius-Perron operator; Bernoulli operator; Ruelle-Frobenius-Perron operator; Frobenius–Perron operator; Perron–Frobenius operator
In mathematics, the transfer operator encodes information about an iterated map and is frequently used to study the behavior of dynamical systems, statistical mechanics, quantum chaos and fractals. In all usual cases, the largest eigenvalue is 1, and the corresponding eigenvector is the invariant measure of the system.

Wikipedia

Del

Del, or nabla, is an operator used in mathematics (particularly in vector calculus) as a vector differential operator, usually represented by the nabla symbol . When applied to a function defined on a one-dimensional domain, it denotes the standard derivative of the function as defined in calculus. When applied to a field (a function defined on a multi-dimensional domain), it may denote any one of three operators depending on the way it is applied: the gradient or (locally) steepest slope of a scalar field (or sometimes of a vector field, as in the Navier–Stokes equations); the divergence of a vector field; or the curl (rotation) of a vector field.

Strictly speaking, del is not a specific operator, but rather a convenient mathematical notation for those three operators that makes many equations easier to write and remember. The del symbol (or nabla) can be interpreted as a vector of partial derivative operators; and its three possible meanings—gradient, divergence, and curl—can be formally viewed as the product with a scalar, a dot product, and a cross product, respectively, of the "del operator" with the field. These formal products do not necessarily commute with other operators or products. These three uses, detailed below, are summarized as:

  • Gradient: grad f = f {\displaystyle \operatorname {grad} f=\nabla f}
  • Divergence: div v = v {\displaystyle \operatorname {div} {\vec {v}}=\nabla \cdot {\vec {v}}}
  • Curl: curl v = × v {\displaystyle \operatorname {curl} {\vec {v}}=\nabla \times {\vec {v}}}