z"n - Definition. Was ist z"n
DICLIB.COM
KI-basierte Sprachtools
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist z"n - definition

GROUP OF UNITS OF THE RING OF INTEGERS MODULO N
Multiplicative group of residues modulo n; Zn*; Z n^*; Zp*; Z p^*; (Z/nZ)*; Multiplicative group of integers mod n

Z N model         
User:Climb026/Z N model
The Z_N model (also known as the clock model) is a simplified statistical mechanical spin model. It is a generalization of the Ising model.
List of Araneidae species: NZ         
WIKIMEDIA LIST ARTICLE
List of Araneidae species: N-Z
This page lists all described species of the spider family Araneidae as of Dec. 21, 2016, that start with letters N through Z.
List of athletes from Maryland NZ         
WIKIMEDIA LIST ARTICLE
List of athletes from Maryland N - Z
Maryland has a long history concerning sports and a number of major and minor professional sport figures have hailed from the state. Maryland enjoys considerable historical repute for the talented sports players of its past, including Cal Ripken Jr.

Wikipedia

Multiplicative group of integers modulo n

In modular arithmetic, the integers coprime (relatively prime) to n from the set { 0 , 1 , , n 1 } {\displaystyle \{0,1,\dots ,n-1\}} of n non-negative integers form a group under multiplication modulo n, called the multiplicative group of integers modulo n. Equivalently, the elements of this group can be thought of as the congruence classes, also known as residues modulo n, that are coprime to n. Hence another name is the group of primitive residue classes modulo n. In the theory of rings, a branch of abstract algebra, it is described as the group of units of the ring of integers modulo n. Here units refers to elements with a multiplicative inverse, which, in this ring, are exactly those coprime to n.

This quotient group, usually denoted ( Z / n Z ) × {\displaystyle (\mathbb {Z} /n\mathbb {Z} )^{\times }} , is fundamental in number theory. It is used in cryptography, integer factorization, and primality testing. It is an abelian, finite group whose order is given by Euler's totient function: | ( Z / n Z ) × | = φ ( n ) . {\displaystyle |(\mathbb {Z} /n\mathbb {Z} )^{\times }|=\varphi (n).} For prime n the group is cyclic and in general the structure is easy to describe, though even for prime n no general formula for finding generators is known.