Łojasiewicz inequality - Definition. Was ist Łojasiewicz inequality
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Łojasiewicz inequality - definition


Łojasiewicz inequality         
INEQUALITY FROM DISTANCE TO A ZERO OF A REAL ANALYTIC FUNCTION
Lojasiewicz inequality; Polyak-Łojasiewicz condition
In real algebraic geometry, the Łojasiewicz inequality, named after Stanisław Łojasiewicz, gives an upper bound for the distance of a point to the nearest zero of a given real analytic function. Specifically, let ƒ : U → R be a real analytic function on an open set U in Rn, and let Z be the zero locus of ƒ.
Poincaré inequality         
In mathematics, the Poincaré inequality is a result in the theory of Sobolev spaces, named after the French mathematician Henri Poincaré. The inequality allows one to obtain bounds on a function using bounds on its derivatives and the geometry of its domain of definition.
Grönwall's inequality         
THEOREM THAT GIVES BOUNDS ON INTEGRALS OF FUNCTIONS
Gronwall's lemma; Grönwall's lemma; Gronwall inequality; Gronwall lemma; Grönwall inequality; Grönwall lemma; Bellman-Gronwall inequality; Bellman-gronwall inequality; Groenwall's inequality; Groenwall inequality; Groenwall lemma; Groenwall's lemma; Gronwall–Bellman inequality; Gronwall's inequality; Gronwall-Bellman inequality
In mathematics, Grönwall's inequality (also called Grönwall's lemma or the Grönwall–Bellman inequality) allows one to bound a function that is known to satisfy a certain differential or integral inequality by the solution of the corresponding differential or integral equation. There are two forms of the lemma, a differential form and an integral form.