Acnode - Definition. Was ist Acnode
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Acnode - definition

ISOLATED POINT IN THE SOLUTION SET OF A POLYNOMIAL EQUATION IN TWO REAL VARIABLES. EQUIVALENT TERMS ARE "ISOLATED POINT OR HERMIT POINT"

Acnode         
·noun An isolated point not upon a curve, but whose coordinates satisfy the equation of the curve so that it is considered as belonging to the curve.

Wikipedia

Acnode

An acnode is an isolated point in the solution set of a polynomial equation in two real variables. Equivalent terms are isolated point and hermit point.

For example the equation

f ( x , y ) = y 2 + x 2 x 3 = 0 {\displaystyle f(x,y)=y^{2}+x^{2}-x^{3}=0}

has an acnode at the origin, because it is equivalent to

y 2 = x 2 ( x 1 ) {\displaystyle y^{2}=x^{2}(x-1)}

and x 2 ( x 1 ) {\displaystyle x^{2}(x-1)} is non-negative only when x {\displaystyle x} ≥ 1 or x = 0 {\displaystyle x=0} . Thus, over the real numbers the equation has no solutions for x < 1 {\displaystyle x<1} except for (0, 0).

In contrast, over the complex numbers the origin is not isolated since square roots of negative real numbers exist. In fact, the complex solution set of a polynomial equation in two complex variables can never have an isolated point.

An acnode is a critical point, or singularity, of the defining polynomial function, in the sense that both partial derivatives f x {\displaystyle \partial f \over \partial x} and f y {\displaystyle \partial f \over \partial y} vanish. Further the Hessian matrix of second derivatives will be positive definite or negative definite, since the function must have a local minimum or a local maximum at the singularity.