Ascending Kleene Chain - Definition. Was ist Ascending Kleene Chain
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Ascending Kleene Chain - definition

Kleene fixed point theorem; Ascending Kleene chain; Kleene fixpoint theorem; Kleene Fixed-Point Theorem
  • interval]] [0,7] with the usual order

Stephen Cole Kleene         
AMERICAN MATHEMATICIAN AND THEORETICAL COMPUTER SCIENTIST
Kleene, Stephen Cole; Stephen Kleene; S. C. Kleene; Kleene, S.C.; Kleene; Stephen C. Kleene
Kleene star         
UNARY OPERATION ON SETS OF STRINGS, USED IN REGULAR EXPRESSIONS FOR "ZERO OR MORE REPETITIONS"
Kleene closure; Kleene plus; Star operation; Σ*; Kleene operator; Kleene operators; Star closure
<text> (Or "Kleene closure", named after Stephen Kleene) The postfix "*" operator used in regular expressions, Extended Backus-Naur Form, and similar formalisms to specify a match for zero or more occurrences of the preceding expression. For example, the regular expression "be*t" would match the string "bt", "bet", "beet", "beeeeet", and so on. (2000-07-26)
Kleene star         
UNARY OPERATION ON SETS OF STRINGS, USED IN REGULAR EXPRESSIONS FOR "ZERO OR MORE REPETITIONS"
Kleene closure; Kleene plus; Star operation; Σ*; Kleene operator; Kleene operators; Star closure
In mathematical logic and computer science, the Kleene star (or Kleene operator or Kleene closure) is a unary operation, either on sets of strings or on sets of symbols or characters. In mathematics,

Wikipedia

Kleene fixed-point theorem

In the mathematical areas of order and lattice theory, the Kleene fixed-point theorem, named after American mathematician Stephen Cole Kleene, states the following:

Kleene Fixed-Point Theorem. Suppose ( L , ) {\displaystyle (L,\sqsubseteq )} is a directed-complete partial order (dcpo) with a least element, and let f : L L {\displaystyle f:L\to L} be a Scott-continuous (and therefore monotone) function. Then f {\displaystyle f} has a least fixed point, which is the supremum of the ascending Kleene chain of f . {\displaystyle f.}

The ascending Kleene chain of f is the chain

f ( ) f ( f ( ) ) f n ( ) {\displaystyle \bot \sqsubseteq f(\bot )\sqsubseteq f(f(\bot ))\sqsubseteq \cdots \sqsubseteq f^{n}(\bot )\sqsubseteq \cdots }

obtained by iterating f on the least element ⊥ of L. Expressed in a formula, the theorem states that

lfp ( f ) = sup ( { f n ( ) n N } ) {\displaystyle {\textrm {lfp}}(f)=\sup \left(\left\{f^{n}(\bot )\mid n\in \mathbb {N} \right\}\right)}

where lfp {\displaystyle {\textrm {lfp}}} denotes the least fixed point.

Although Tarski's fixed point theorem does not consider how fixed points can be computed by iterating f from some seed (also, it pertains to monotone functions on complete lattices), this result is often attributed to Alfred Tarski who proves it for additive functions Moreover, Kleene Fixed-Point Theorem can be extended to monotone functions using transfinite iterations.