B7 polytope - Definition. Was ist B7 polytope
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist B7 polytope - definition


B7 polytope         
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
WIKIMEDIA LIST ARTICLE
List of 7-cube polytopes; List of B7 polytopes
In 7-dimensional geometry, there are 128 uniform polytopes with B7 symmetry. There are two regular forms, the 7-orthoplex, and 8-cube with 14 and 128 vertices respectively.
B7 (protein)         
FAMILY OF CELL-SURFACE PROTEINS FOUND ON ANTIGEN-PRESENTING CELLS
B7 family; B7 antigens
B7 is a type of integral membrane protein found on activated antigen-presenting cells (APC) that, when paired with either a CD28 or CD152 (CTLA-4) surface protein on a T cell, can produce a costimulatory signal or a coinhibitory signal to enhance or decrease the activity of a MHC-TCR signal between the APC and the T cell, respectively.
Integral polytope         
  • 120px
  • 120px
  • 120px
  • 120px
  • 120px
  • 120px
  • 120px
CONVEX POLYTOPE WHOSE VERTICES ALL HAVE INTEGER CARTESIAN COORDINATES
Convex lattice polytope
In geometry and polyhedral combinatorics, an integral polytope is a convex polytope whose vertices all have integer Cartesian coordinates. That is, it is a polytope that equals the convex hull of its integer points.