B8 polytope - Definition. Was ist B8 polytope
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist B8 polytope - definition


B8 polytope         
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
WIKIMEDIA LIST ARTICLE
List of 8-cube polytopes; List of B8 polytopes
In 8-dimensional geometry, there are 256 uniform polytopes with B8 symmetry. There are two regular forms, the 8-orthoplex and 8-cube, with 16 and 256 vertices respectively.
Integral polytope         
  • 120px
  • 120px
  • 120px
  • 120px
  • 120px
  • 120px
  • 120px
CONVEX POLYTOPE WHOSE VERTICES ALL HAVE INTEGER CARTESIAN COORDINATES
Convex lattice polytope
In geometry and polyhedral combinatorics, an integral polytope is a convex polytope whose vertices all have integer Cartesian coordinates. That is, it is a polytope that equals the convex hull of its integer points.
1 22 polytope         
  • 25px
  • 160px
  • 160px
  • 25px
  • 25px
  • 50px
  • Orthographic projection in Aut(E6) Coxeter plane with 18-gonal symmetry for complex polyhedron, <sub>3</sub>{3}<sub>3</sub>{4}<sub>2</sub>. It has 72 vertices, 216 3-edges, and 54 3{3}3 faces.
  • 25px
  • 30px
  • 160px
  • 240px
  • 160px
  • 160px
UNIFORM 6-POLYTOPE
Gosset 1 22 polytope; Rectified 1 22 polytope; Birectified 2 21 polytope; Birectified 1 22 polytope; 0 221 polytope; Rectified 1 22; Birectified 1 22; Bicantellated 2 21; Truncated 1 22; Truncated 1 22 polytope
In 6-dimensional geometry, the 122 polytope is a uniform polytope, constructed from the E6 group. It was first published in E.