Gauss-Bonnet formula - Definition. Was ist Gauss-Bonnet formula
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Gauss-Bonnet formula - definition

Chern-Gauss-Bonnet theorem; Generalized Gauss-Bonnet theorem; Gauss–Bonnet term; Gauss-Bonnet term; Chern–Gauss–Bonnet formula; Chern-Gauss-Bonnet formula; Chern theorem; Generalized Gauss–Bonnet theorem; Chern-Gauss–Bonnet theorem; Chern formula; Chen-Gauss-Bonnet theorem; Chern-Gauss-Bonnet Theorem; Gauss-Bonnet equation

Chern–GaussBonnet theorem         
In mathematics, the Chern theorem (or the Chern–GaussBonnet theorem after Shiing-Shen Chern, Carl Friedrich Gauss, and Pierre Ossian Bonnet) states that the Euler-Poincaré characteristic (a topological invariant defined as the alternating sum of the Betti numbers of a topological space) of a closed even-dimensional Riemannian manifold is equal to the integral of a certain polynomial (the Euler class) of its curvature form (an analytical invariant).
GaussBonnet gravity         
In general relativity, GaussBonnet gravity, also referred to as Einstein–GaussBonnet gravity, is a modification of the Einstein–Hilbert action to include the GaussBonnet term (named after Carl Friedrich Gauss and Pierre Ossian Bonnet)
Shoelace formula         
  • Shoelace scheme for determining the area of a polygon with point coordinates <math>(x_1,y_1),...,(x_n,y_n)</math>
  • Manipulations of a polygon
  • Example
  • Basic idea: Any polygon edge determines the ''signed'' area of a trapezoid. All these areas sum up to the polygon area.
  • Deriving the trapezoid formula
  • Horizontal shoelace form for the example.
  • Triangle form: The color of the edges indicate, which triangle area  is positive (green) and negative (red) respectively.
MATHEMATICAL ALGORITHM TO DETERMINE THE AREA OF A SIMPLE POLYGON
Surveyor's formula; Shoelace algorithm; Shoelace Method; Gauss' area formula; Gauss's area formula; Gauss area formula
The shoelace formula, shoelace algorithm, or shoelace method (also known as Gauss's area formula and the surveyor's formula) is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. It is called the shoelace formula because of the constant cross-multiplying for the coordinates making up the polygon, like threading shoelaces.

Wikipedia

Chern–Gauss–Bonnet theorem

In mathematics, the Chern theorem (or the Chern–Gauss–Bonnet theorem after Shiing-Shen Chern, Carl Friedrich Gauss, and Pierre Ossian Bonnet) states that the Euler–Poincaré characteristic (a topological invariant defined as the alternating sum of the Betti numbers of a topological space) of a closed even-dimensional Riemannian manifold is equal to the integral of a certain polynomial (the Euler class) of its curvature form (an analytical invariant).

It is a highly non-trivial generalization of the classic Gauss–Bonnet theorem (for 2-dimensional manifolds / surfaces) to higher even-dimensional Riemannian manifolds. In 1943, Carl B. Allendoerfer and André Weil proved a special case for extrinsic manifolds. In a classic paper published in 1944, Shiing-Shen Chern proved the theorem in full generality connecting global topology with local geometry.

Riemann–Roch and Atiyah–Singer are other generalizations of the Gauss–Bonnet theorem.