Osculation - Definition. Was ist Osculation
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Osculation - definition

Osculation; Osculate (mathematics); Osculating curves

Osculation         
·noun The act of kissing; a kiss.
II. Osculation ·noun The contact of one curve with another, when the number of consecutive points of the latter through which the former passes suffices for the complete determination of the former curve.
Osculating circle         
CIRCLE OF IMMEDIATE CORRESPONDING CURVATURE OF A CURVE AT A POINT
Kissing circles; Circle of curvature; Circle of osculation
In differential geometry of curves, the osculating circle of a sufficiently smooth plane curve at a given point p on the curve has been traditionally defined as the circle passing through p and a pair of additional points on the curve infinitesimally close to p. Its center lies on the inner normal line, and its curvature defines the curvature of the given curve at that point.
osculate         
WIKIMEDIA DISAMBIGUATION PAGE
Osculate (disambiguation); Osculating
v. a.
1.
Kiss.
2.
(Geom.) Touch.

Wikipedia

Osculating curve

In differential geometry, an osculating curve is a plane curve from a given family that has the highest possible order of contact with another curve. That is, if F is a family of smooth curves, C is a smooth curve (not in general belonging to F), and P is a point on C, then an osculating curve from F at P is a curve from F that passes through P and has as many of its derivatives at P equal to the derivatives of C as possible.

The term derives from the Latinate root "osculate", to kiss, because the two curves contact one another in a more intimate way than simple tangency.