P versus NP problem - Definition. Was ist P versus NP problem
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist P versus NP problem - definition


P versus NP problem         
  • s2cid=14352974 }}</ref>
  • quadratic fit]] suggests that the algorithmic complexity of the problem is O((log(''n''))<sup>2</sup>).<ref name=Pisinger2003>Pisinger, D. 2003. "Where are the hard knapsack problems?" Technical Report 2003/08, Department of Computer Science, University of Copenhagen, Copenhagen, Denmark</ref>
  • NP]], NP-complete, and NP-hard set of problems (excluding the empty language and its complement, which belong to P but are not NP-complete)
UNSOLVED PROBLEM IN COMPUTER SCIENCE ABOUT TIME COMPLEXITY
P=NP; P and NP; P = NP; P==NP; P≠NP; P!=NP; P/=NP; P versus NP; P vs. NP; P vs NP; P=NP?; NP problem; P Versus NP Problem; P=np; P vs np; Complexity classes P and NP; P=NP problem; P ≠ NP; P is not NP; NP=P; NP = P; P Versus NP; Succinct problem; Succinct problems; P=?NP; P vs. NP problem; P = NP problem; Algebrization; P = NP?; P vs NP problem; Vinay Deolalikar; P≟NP; P ≟ NP; P ? NP; NP conjecture; P conjecture; NP versus P problem; NP=P problem; Smale's third problem; User:Robert McClenon/Vinay Deolilakar; Vinay Deolilakar; P/NP Problem; P v NP; P = np; P≟NP problem; Np vs p; P versus NP conjecture; NP versus P conjecture
The P versus NP problem is a major unsolved problem in theoretical computer science. In informal terms, it asks whether every problem whose solution can be quickly verified can also be quickly solved.
NP-hard         
  • P≠NP]], while the right side is valid under the assumption that P=NP (except that the empty language and its complement are never NP-complete)
COMPLEXITY CLASS
NP hard; Np hard; Np-hard; NP-Hard Problem; NP-HARD; NP-hard problems; NP-Hard; NP-hard
<complexity> A set or property of computational {search problems}. A problem is NP-hard if solving it in {polynomial time} would make it possible to solve all problems in class NP in polynomial time. Some NP-hard problems are also in NP (these are called "NP-complete"), some are not. If you could reduce an NP problem to an NP-hard problem and then solve it in polynomial time, you could solve all NP problems. See also computational complexity. [Examples?] (1995-04-10)
NP-hardness         
  • P≠NP]], while the right side is valid under the assumption that P=NP (except that the empty language and its complement are never NP-complete)
COMPLEXITY CLASS
NP hard; Np hard; Np-hard; NP-Hard Problem; NP-HARD; NP-hard problems; NP-Hard; NP-hard
In computational complexity theory, NP-hardness (non-deterministic polynomial-time hardness) is the defining property of a class of problems that are informally "at least as hard as the hardest problems in NP". A simple example of an NP-hard problem is the subset sum problem.