Quotient (universal algebra) - Definition. Was ist Quotient (universal algebra)
DICLIB.COM
KI-basierte Sprachtools
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Quotient (universal algebra) - definition

CONSTRUCTION IN UNIVERSAL ALGEBRA
Congruence lattice; Compatible operation; Maltsev variety; Maltsev conditions; Quotient algebra (universal algebra)

Quotient (universal algebra)         
In mathematics, a quotient algebra is the result of partitioning the elements of an algebraic structure using a congruence relation.
Universal algebra         
FIELD OF MATHEMATICS CONCERNING THE THEORY OF ALGEBRAIC STRUCTURES
Universal Algebra; Equational theory; General algebra; Equational reasoning; History of universal algebra
<logic> The model theory of first-order {equational logic}. (1997-02-25)
Universal algebra         
FIELD OF MATHEMATICS CONCERNING THE THEORY OF ALGEBRAIC STRUCTURES
Universal Algebra; Equational theory; General algebra; Equational reasoning; History of universal algebra
Universal algebra (sometimes called general algebra) is the field of mathematics that studies algebraic structures themselves, not examples ("models") of algebraic structures.

Wikipedia

Quotient (universal algebra)

In mathematics, a quotient algebra is the result of partitioning the elements of an algebraic structure using a congruence relation. Quotient algebras are also called factor algebras. Here, the congruence relation must be an equivalence relation that is additionally compatible with all the operations of the algebra, in the formal sense described below. Its equivalence classes partition the elements of the given algebraic structure. The quotient algebra has these classes as its elements, and the compatibility conditions are used to give the classes an algebraic structure.

The idea of the quotient algebra abstracts into one common notion the quotient structure of quotient rings of ring theory, quotient groups of group theory, the quotient spaces of linear algebra and the quotient modules of representation theory into a common framework.