Student's t-test - Definition. Was ist Student's t-test
DICLIB.COM
KI-basierte Sprachtools
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Student's t-test - definition


Student's t-test         
  • Power of unpaired and paired two-sample ''t''-tests as a function of the correlation. The simulated random numbers originate from a bivariate normal distribution with a variance of 1 and a deviation of the expected value of 0.4. The significance level is 5% and the number of cases is 60.
  • Type I error of unpaired and paired two-sample ''t''-tests as a function of the correlation. The simulated random numbers originate from a bivariate normal distribution with a variance of 1. The significance level is 5% and the number of cases is 60.
  • [[William Sealy Gosset]], who developed the "''t''-statistic" and published it under the [[pseudonym]] of "Student"
STATISTICAL METHOD
T-test; T test; T Test; Student's t test; Ttest; Paired student's t test; Student t test; Paired t-test; Two-sample t-test; Two sample t-test; T-Test; Dependent test; Independent test; Nonpaired test; Nonpaired; T-tests; Paired samples t-test; Paired-samples t-test; Paired sample t-test; Paired-sample t-test; T-test for paired samples; Student's T-Test; Student T-test; Student's T Test; One sample t-test; Student’s T Test
The t-test is any statistical hypothesis test in which the test statistic follows a Student's t-distribution under the null hypothesis.
Student's t-test         
  • Power of unpaired and paired two-sample ''t''-tests as a function of the correlation. The simulated random numbers originate from a bivariate normal distribution with a variance of 1 and a deviation of the expected value of 0.4. The significance level is 5% and the number of cases is 60.
  • Type I error of unpaired and paired two-sample ''t''-tests as a function of the correlation. The simulated random numbers originate from a bivariate normal distribution with a variance of 1. The significance level is 5% and the number of cases is 60.
  • [[William Sealy Gosset]], who developed the "''t''-statistic" and published it under the [[pseudonym]] of "Student"
STATISTICAL METHOD
T-test; T test; T Test; Student's t test; Ttest; Paired student's t test; Student t test; Paired t-test; Two-sample t-test; Two sample t-test; T-Test; Dependent test; Independent test; Nonpaired test; Nonpaired; T-tests; Paired samples t-test; Paired-samples t-test; Paired sample t-test; Paired-sample t-test; T-test for paired samples; Student's T-Test; Student T-test; Student's T Test; One sample t-test; Student’s T Test
¦ noun a test for statistical significance based on a fraction (t) whose numerator is drawn from a normal distribution with a mean of zero, and whose denominator is the root mean square of a number of terms drawn from the same normal distribution.
Origin
1930s: Student, the pseudonym of William Sealy Gosset, English brewery employee, who devised the test.
Welch's t-test         
STATISTICAL TEST OF WHETHER TWO POPULATIONS HAVE EQUAL MEANS
Welch t-test; Welch t test; Welch's correction; Welch's t test; Welch's test
In statistics, Welch's t-test, or unequal variances t-test, is a two-sample location test which is used to test the hypothesis that two populations have equal means. It is named for its creator, Bernard Lewis Welch, is an adaptation of Student's t-test, and is more reliable when the two samples have unequal variances and possibly unequal sample sizes.