aleph 0 - Definition. Was ist aleph 0
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist aleph 0 - definition

SEQUENCE OF NUMBERS USED TO REPRESENT THE CARDINALITY (OR SIZE) OF INFINITE SETS THAT CAN BE WELL-ORDERED
Aleph-null; Aleph-naught; Aleph-one; Aleph zero; Aleph 0; Aleph null; Aleph one; Aleph 1; Aleph-nought; Aleph One; Aleph-0; Aleph-Null; Aleph-Zero; Aleph-zero; Aleph-1; Aleph nought; AlephOne; Aleph function; Aleph naught; Aleph Null; Aleph notation; ℵ₀; ℵ₁; Aleph numbers; Alpeh-omega; א0; ℵ0; ℵ1
  • Aleph-nought, aleph-zero, or aleph-null, the smallest infinite cardinal number

aleph 0         
<mathematics> The cardinality of the first infinite ordinal, omega (the number of natural numbers). Aleph 1 is the cardinality of the smallest ordinal whose cardinality is greater than aleph 0, and so on up to aleph omega and beyond. These are all kinds of infinity. The Axiom of Choice (AC) implies that every set can be well-ordered, so every infinite cardinality is an aleph; but in the absence of AC there may be sets that can't be well-ordered (don't posses a bijection with any ordinal) and therefore have cardinality which is not an aleph. These sets don't in some way sit between two alephs; they just float around in an annoying way, and can't be compared to the alephs at all. No ordinal possesses a surjection onto such a set, but it doesn't surject onto any sufficiently large ordinal either. (1995-03-29)
Aleph number         
In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality (or size) of infinite sets that can be well-ordered. They were introduced by the mathematician Georg Cantor and are named after the symbol he used to denote them, the Hebrew letter aleph (\,\aleph\,).
Aleph         
  • 31px
  • 18px
  • 45px
  • 45px
  • 45px
  • 500px
FIRST LETTER OF MANY SEMITIC ALPHABETS
א; ﺍ; ﺎ; ا; אַ; אָ; אּ; ʼalif; ʾalp; Aleph (Hebrew); ʾalif; ܐ; Alaph; ʼalp; Aleph (letter); Egyptian aleph; Broken alif; Alif maqsura; `alif; `alp; 'alp; 'alif; Ālaph; Egyptological Aleph; ࠀ; 𐤀; 𐡀; ى; Alef maksura; Alif (letter); 'Alif; Alif maqṣūra; Ꜣ; ﻯ; ﻰ; ﯨ; ﯩ; ݳ; ݴ; Alif maddah; Alif madda; 'alif maddah; Alef; Egyptian alef; Alef (letter); Ālep; Alaphs; Egyptological alef; Egyptological aleph; اَ; ـا; ﬡ; Alif maqsuura; Alif maksoorah; ـى; ʾalif layyina; Alif layyinah; 'alif layyina
<text, language> ["Aleph: A language for typesetting", Luigi Semenzato <luigi@cs.berkeley.edu> and Edward Wang <edward@cs.berkeley.edu> in Proceedings of Electronic Publishing, 1992 Ed. Vanoirbeek & Coray Cambridge University Press 1992]. (1994-12-15)

Wikipedia

Aleph number

In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality (or size) of infinite sets that can be well-ordered. They were introduced by the mathematician Georg Cantor and are named after the symbol he used to denote them, the Semitic letter aleph ( {\displaystyle \,\aleph \,} ).

The cardinality of the natural numbers is 0 {\displaystyle \,\aleph _{0}\,} (read aleph-nought or aleph-zero; the term aleph-null is also sometimes used), the next larger cardinality of a well-orderable set is aleph-one 1 , {\displaystyle \,\aleph _{1}\;,} then 2 {\displaystyle \,\aleph _{2}\,} and so on. Continuing in this manner, it is possible to define a cardinal number α {\displaystyle \,\aleph _{\alpha }\,} for every ordinal number α , {\displaystyle \,\alpha \;,} as described below.

The concept and notation are due to Georg Cantor, who defined the notion of cardinality and realized that infinite sets can have different cardinalities.

The aleph numbers differ from the infinity ( {\displaystyle \,\infty \,} ) commonly found in algebra and calculus, in that the alephs measure the sizes of sets, while infinity is commonly defined either as an extreme limit of the real number line (applied to a function or sequence that "diverges to infinity" or "increases without bound"), or as an extreme point of the extended real number line.