concavity - Definition. Was ist concavity
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist concavity - definition

MATHEMATICAL OPERATION
Concavity; Second Derivative; F''(x); Second-order derivative; Second order derivative
  • constant]].
  • A plot of <math>f(x) = \sin(2x)</math> from <math>-\pi/4</math> to <math>5\pi/4</math>. The tangent line is blue where the curve is concave up, green where the curve is concave down, and red at the inflection points (0, <math>\pi</math>/2, and <math>\pi</math>).

Concavity         
·noun A concave surface, or the space bounded by it; the state of being concave.
concavity         
n.
1.
Hollowness, hollow shape, hollowed condition, state or degree of incurvation.
2.
Hollow space, hollow, depression.
Concave         
WIKIMEDIA DISAMBIGUATION PAGE
Concave (disambiguation)
·adj Hollow; void of contents.
II. Concave ·vt To make hollow or concave.
III. Concave ·noun A hollow; an arched vault; a cavity; a recess.
IV. Concave ·noun A curved sheath or breasting for a revolving cylinder or roll.
V. Concave ·adj Hollow and curved or rounded; vaulted;
- said of the interior of a curved surface or line, as of the curve of the of the inner surface of an eggshell, in opposition to convex; as, a concave mirror; the concave arch of the sky.

Wikipedia

Second derivative

In calculus, the second derivative, or the second-order derivative, of a function f is the derivative of the derivative of f. Roughly speaking, the second derivative measures how the rate of change of a quantity is itself changing; for example, the second derivative of the position of an object with respect to time is the instantaneous acceleration of the object, or the rate at which the velocity of the object is changing with respect to time. In Leibniz notation:

a = d v d t = d 2 x d t 2 , {\displaystyle \mathbf {a} ={\frac {d\mathbf {v} }{dt}}={\frac {d^{2}{\boldsymbol {x}}}{dt^{2}}},}

where a is acceleration, v is velocity, t is time, x is position, and d is the instantaneous "delta" or change. The last expression d 2 x d t 2 {\displaystyle {\tfrac {d^{2}{\boldsymbol {x}}}{dt^{2}}}} is the second derivative of position (x) with respect to time.

On the graph of a function, the second derivative corresponds to the curvature or concavity of the graph. The graph of a function with a positive second derivative is upwardly concave, while the graph of a function with a negative second derivative curves in the opposite way.

Beispiele aus Textkorpus für concavity
1. A large shadow is cast in the concavity of the sail, adding thrust and definition that‘s absent in the sketch.