cubic$18003$ - Definition. Was ist cubic$18003$
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist cubic$18003$ - definition

UNIT OF VOLUME
Cubic centimeter; Cm³; Cubic centimetres; ㏄; Cubic centimeters

McCay cubic         
  • McCay Cubic as the locus of P such that the pedal circle of P (circle P<sub>a</sub>P<sub>b</sub>P<sub>c</sub>) touches the nine point circle (circle DEF) of triangle ABC
  • McCay cubic with its three concurring asymptotes
McCay stelloid; Griffiths cubic; M'Cay cubic
In mathematics, in triangle geometry, McCay cubic (also called M'Cay cubic or Griffiths cubic) is a cubic plane curve in the plane of the reference triangle and associated with it, and having several remarkable properties. It is the third cubic curve in Bernard Gilbert's Catalogue of Triangle Cubics and it is assigned the identification number K003.
Cubic Hermite spline         
  • Cardinal spline example in 2D. The line represents the curve, and the squares represent the control points <math>\boldsymbol{p}_k</math>. Notice that the curve does not reach the first and last points; these points do, however, affect the shape of the curve. The tension parameter used is 0.1
  • Example with finite-difference tangents
  • The four Hermite basis functions. The interpolant in each subinterval is a linear combination of these four functions.
SPLINE WHERE EACH PIECE IS A THIRD-DEGREE POLYNOMIAL SPECIFIED IN HERMITE FORM: THAT IS, BY ITS VALUES AND FIRST DERIVATIVES AT THE END POINTS OF THE CORRESPONDING DOMAIN INTERVAL
Cubic spline; Cubic Hermite curve; Cubic Hermite curves; Cardinal spline; Catmull-Rom spline; Hermite curve; Hermite curves; Cubic interpolation; Cubic hermite spline; Catmull–Rom spline; Cspline; Catmull-Rom; Cubic Hermite Polynomial; Draft:Cubic interpolation
In numerical analysis, a cubic Hermite spline or cubic Hermite interpolator is a spline where each piece is a third-degree polynomial specified in Hermite form, that is, by its values and first derivatives at the end points of the corresponding domain interval.
Cubic honeycomb         
  • 320px
  • 240px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 120px
  • 80px
  • 80px
  • 240px
  • 80px
  • 80px
  • 220px
  • 80px
  • 80px
  • 120px
  • 80px
  • 120px
  • 120px
  • 120px
  • 120px
  • 120px
  • 120px
  • 80px
  • 80px
  • 120px
  • 120px
  • 120px
  • 120px
  • 120px
  • 80px
  • 200px
  • 120px
  • 80px
  • 190px
  • 80px
  • 240px
  • The bitruncated cubic honeycomb shown here in relation to a cubic honeycomb
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 120px
  • 160px
  • 160px
  • 110px
  • 112px
  • 110px
  • 194px
  • 80px
  • 80px
  • 40px
  • 100px
  • 80px
  • 80px
  • 80px
  • 80px
  • 320px
  • 100px
  • 80px
  • 80px
  • 80px
  • 200px
  • 80px
  • 80px
  • 80px
  • 80px
  • 320px
  • 120px
  • 190px
  • 200px
  • 200px
  • 320px
  • 80px
  • 80px
  • 80px
  • 40px
  • 80px
  • 80px
  • 60px
  • 40px
  • 40px
  • 80px
  • 80px
  • 300px
  • 40px
  • 40px
  • 25px
  • 40px
  • 40px
  • 40px
  • 40px
  • 40px
  • 40px
  • 40px
  • 25px
  • 40px
ONLY REGULAR SPACE-FILLING TESSELLATION OF THE CUBE
Truncated cubic honeycomb; Rectified cubic honeycomb; Cantellated cubic honeycomb; Runcitruncated cubic honeycomb; Cantitruncated cubic honeycomb; Omnitruncated cubic honeycomb; Truncated square prismatic honeycomb; Snub square prismatic honeycomb; Runcinated cubic honeycomb; 3-cube honeycomb; Alternated cantitruncated cubic honeycomb; Regular cubic honeycomb; Runcicantellated cubic honeycomb; Runcinated cubic honycomb; D3 lattice; Snub rectified cubic honeycomb; Runcic cantitruncated cubic honeycomb; Alternated omnitruncated cubic honeycomb; Cubic cellulation; Rectified cubic cellulation; Truncated cubic cellulation; Cantellated cubic cellulation; Runcinated cubic cellulation; Cantitruncated cubic cellulation; Runcitruncated cubic cellulation; Omnitruncated cubic cellulation; Simo-square prismatic cellulation; Tomo-square prismatic cellulation; Quarter oblate octahedrille; Square quarter pyramidille; Triangular pyramidille; Order-3-4 square honeycomb; Cantic snub cubic honeycomb
The cubic honeycomb or cubic cellulation is the only proper regular space-filling tessellation (or honeycomb) in Euclidean 3-space made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex.

Wikipedia

Cubic centimetre

A cubic centimetre (or cubic centimeter in US English) (SI unit symbol: cm3; non-SI abbreviations: cc and ccm) is a commonly used unit of volume that corresponds to the volume of a cube that measures 1 cm × 1 cm × 1 cm. One cubic centimetre corresponds to a volume of one millilitre. The mass of one cubic centimetre of water at 3.98 °C (the temperature at which it attains its maximum density) is almost equal to one gram.

In internal combustion engines, "cc" refers to the total volume of its engine displacement in cubic centimetres. The displacement can be calculated using the formula

d = π 4 × b 2 × s × n {\displaystyle d={\pi \over 4}\times b^{2}\times s\times n}

where d is engine displacement, b is the bore of the cylinders, s is length of the stroke and n is the number of cylinders.

Conversions

  • 1 millilitre = 1 cm3
  • 1 litre = 1000 cm3
  • 1 cubic inch = 16.38706 cm3.