cyanogenetic$18353$ - Definition. Was ist cyanogenetic$18353$
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist cyanogenetic$18353$ - definition

MOLECULE IN WHICH A SUGAR IS BOUND TO ANOTHER FUNCTIONAL GROUP
Glycosides; Glycone; Cyanogenic glycosides; Cyanogenic glycoside; Cyanogenetic glycosides; Cyanogenetic glycoside; Thioglycosides; Aglutone; Glycosid; Cyanogenic glucoside; Bioside; C-glycoside; C-glycosides; O-glycosides; O-glycoside; Thioglycoside; Iridoid glycoside; Cyanoglycoside; Cyanoglycosides
  • [[Amygdalin]]
  • Chemical structure of [[oleandrin]], a [[cardiac glycoside]]
  •  [[Salicin]], a glycoside related to [[aspirin]]

glycoside         
['gl??k?(?)s??d]
¦ noun Biochemistry a compound formed from a simple sugar and another compound by replacement of a hydroxyl group in the sugar molecule.
Derivatives
glycosidic adjective
Origin
C19: from glyco-, on the pattern of glucoside.
Glycoside         
In chemistry, a glycoside is a molecule in which a sugar is bound to another functional group via a glycosidic bond. Glycosides play numerous important roles in living organisms.

Wikipedia

Glycoside

In chemistry, a glycoside is a molecule in which a sugar is bound to another functional group via a glycosidic bond. Glycosides play numerous important roles in living organisms. Many plants store chemicals in the form of inactive glycosides. These can be activated by enzyme hydrolysis, which causes the sugar part to be broken off, making the chemical available for use. Many such plant glycosides are used as medications. Several species of Heliconius butterfly are capable of incorporating these plant compounds as a form of chemical defense against predators. In animals and humans, poisons are often bound to sugar molecules as part of their elimination from the body.

In formal terms, a glycoside is any molecule in which a sugar group is bonded through its anomeric carbon to another group via a glycosidic bond. Glycosides can be linked by an O- (an O-glycoside), N- (a glycosylamine), S-(a thioglycoside), or C- (a C-glycoside) glycosidic bond. According to the IUPAC, the name "C-glycoside" is a misnomer; the preferred term is "C-glycosyl compound". The given definition is the one used by IUPAC, which recommends the Haworth projection to correctly assign stereochemical configurations.

Many authors require in addition that the sugar be bonded to a non-sugar for the molecule to qualify as a glycoside, thus excluding polysaccharides. The sugar group is then known as the glycone and the non-sugar group as the aglycone or genin part of the glycoside. The glycone can consist of a single sugar group (monosaccharide), two sugar groups (disaccharide), or several sugar groups (oligosaccharide).

The first glycoside ever identified was amygdalin, by the French chemists Pierre Robiquet and Antoine Boutron-Charlard, in 1830.