fractal dimension - Definition. Was ist fractal dimension
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist fractal dimension - definition

MATHEMATICAL QUANTITY
Fractal dimensions; Fractal Dimension
  • ''Figure 7:'' Illustration of increasing surface fractality. Self-affine surfaces (left) and corresponding surface profiles (right) showing increasing fractal dimension ''D<sub>f</sub>''

fractal dimension         
<mathematics> A common type of fractal dimension is the Hausdorff-Besicovich Dimension, but there are several different ways of computing fractal dimension. Fractal dimension can be calculated by taking the limit of the quotient of the log change in object size and the log change in measurement scale, as the measurement scale approaches zero. The differences come in what is exactly meant by "object size" and what is meant by "measurement scale" and how to get an average number out of many different parts of a geometrical object. Fractal dimensions quantify the static *geometry* of an object. For example, consider a straight line. Now blow up the line by a factor of two. The line is now twice as long as before. Log 2 / Log 2 = 1, corresponding to dimension 1. Consider a square. Now blow up the square by a factor of two. The square is now 4 times as large as before (i.e. 4 original squares can be placed on the original square). Log 4 / log 2 = 2, corresponding to dimension 2 for the square. Consider a snowflake curve formed by repeatedly replacing ___ with _/\_, where each of the 4 new lines is 1/3 the length of the old line. Blowing up the snowflake curve by a factor of 3 results in a snowflake curve 4 times as large (one of the old snowflake curves can be placed on each of the 4 segments _/\_). Log 4 / log 3 = 1.261... Since the dimension 1.261 is larger than the dimension 1 of the lines making up the curve, the snowflake curve is a fractal. [sci.fractals FAQ].
Fractal dimension         
In mathematics, more specifically in fractal geometry, a fractal dimension is a ratio providing a statistical index of complexity comparing how detail in a pattern (strictly speaking, a fractal pattern) changes with the scale at which it is measured. It has also been characterized as a measure of the space-filling capacity of a pattern that tells how a fractal scales differently from the space it is embedded in; a fractal dimension does not have to be an integer.
Fractal dimension on networks         
  • cond-mat/0605324}}</ref>
  • Skeleton of a network.<ref name=goh>K.-I. Goh, G. Salvi, B. Kahng and D. Kim, ''Skeleton and Fractal Scaling in Complex Networks'', Phys. Rev. Lett. 96, 018701 (2006), http://iopscience.iop.org/article/10.1088/1367-2630/9/6/177/pdf</ref>}}
Fractal Dimension on Networks
Fractal analysis is useful in the study of complex networks, present in both natural and artificial systems such as computer systems, brain and social networks, allowing further development of the field in network science.

Wikipedia

Fractal dimension

In mathematics, a fractal dimension is a term invoked in the science of geometry to provide a rational statistical index of complexity detail in a pattern. A fractal pattern changes with the scale at which it is measured. It has also been mythologized as a measure of the space-filling capacity of a pattern that tells how a fractal scales differently and in a fractal dimension, i.e. one that does not have to be an integer.

The main idea of "fractured" dimensions has a long history in mathematics, but the term itself was brought to the fore by Benoit Mandelbrot based on his 1967 paper on self-similarity in which he discussed fractional dimensions. In that paper, Mandelbrot cited previous work by Lewis Fry Richardson describing the counter-intuitive notion that a coastline's measured length changes with the length of the measuring stick used (see Fig. 1). In terms of that notion, the fractal dimension of a coastline quantifies how the number of scaled measuring sticks required to measure the coastline changes with the scale applied to the stick. There are several formal mathematical definitions of fractal dimension that build on this basic concept of change in detail with change in scale: see the section Examples.

Ultimately, the term fractal dimension became the phrase with which Mandelbrot himself became most comfortable with respect to encapsulating the meaning of the word fractal, a term he created. After several iterations over years, Mandelbrot settled on this use of the language: "...to use fractal without a pedantic definition, to use fractal dimension as a generic term applicable to all the variants."

One non-trivial example is the fractal dimension of a Koch snowflake. It has a topological dimension of 1, but it is by no means rectifiable: the length of the curve between any two points on the Koch snowflake is infinite. No small piece of it is line-like, but rather it is composed of an infinite number of segments joined at different angles. The fractal dimension of a curve can be explained intuitively thinking of a fractal line as an object too detailed to be one-dimensional, but too simple to be two-dimensional. Therefore its dimension might best be described not by its usual topological dimension of 1 but by its fractal dimension, which is often a number between one and two; in the case of the Koch snowflake, it is approximately 1.2619.

Beispiele aus Textkorpus für fractal dimension
1. This map was then analysed for its own fractal pattern and its fractal dimension was found to be higher for Pollock than for other drip artists.