irrational numbers - Definition. Was ist irrational numbers
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist irrational numbers - definition

MATHEMATICAL CONCEPT
Quadratic surd; Quadratic irrationality; Quadratic Irrational Number; Quadratic irrationalities; Quadratic irrational; Quadratic irrational numbers

Irrational number         
  • Set of real numbers (R), which include the rationals (Q), which include the integers (Z), which include the natural numbers (N). The real numbers also include the irrationals (R\Q).
REAL NUMBER THAT CANNOT BE EXPRESSED AS A RATIO OF INTEGERS
Irrational numbers; Irrational Numbers; Irrational.number; Irrational Number; Irrationals; Incommensurable magnitudes; History of irrational numbers; First Crisis of Mathematics
In mathematics, the irrational numbers (from in- prefix assimilated to ir- (negative prefix, privative) + rational) are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two integers.
irrational number         
  • Set of real numbers (R), which include the rationals (Q), which include the integers (Z), which include the natural numbers (N). The real numbers also include the irrationals (R\Q).
REAL NUMBER THAT CANNOT BE EXPRESSED AS A RATIO OF INTEGERS
Irrational numbers; Irrational Numbers; Irrational.number; Irrational Number; Irrationals; Incommensurable magnitudes; History of irrational numbers; First Crisis of Mathematics
<mathematics> A real number which is not a {rational number}, i.e. it is not the ratio of two integers. The decimal expansion of an irrational is infinite but does not end in an infinite repeating sequence of digits. Examples of irrational numbers are pi, e and the square root of two. (1995-04-12)
Quadratic irrational number         
In mathematics, a quadratic irrational number (also known as a quadratic irrational, a quadratic irrationality or quadratic surd) is an irrational number that is the solution to some quadratic equation with rational coefficients which is irreducible over the rational numbers.Jörn Steuding, Diophantine Analysis, (2005), Chapman & Hall, p.

Wikipedia

Quadratic irrational number

In mathematics, a quadratic irrational number (also known as a quadratic irrational, a quadratic irrationality or quadratic surd) is an irrational number that is the solution to some quadratic equation with rational coefficients which is irreducible over the rational numbers. Since fractions in the coefficients of a quadratic equation can be cleared by multiplying both sides by their least common denominator, a quadratic irrational is an irrational root of some quadratic equation with integer coefficients. The quadratic irrational numbers, a subset of the complex numbers, are algebraic numbers of degree 2, and can therefore be expressed as

a + b c d , {\displaystyle {a+b{\sqrt {c}} \over d},}

for integers a, b, c, d; with b, c and d non-zero, and with c square-free. When c is positive, we get real quadratic irrational numbers, while a negative c gives complex quadratic irrational numbers which are not real numbers. This defines an injection from the quadratic irrationals to quadruples of integers, so their cardinality is at most countable; since on the other hand every square root of a prime number is a distinct quadratic irrational, and there are countably many prime numbers, they are at least countable; hence the quadratic irrationals are a countable set.

Quadratic irrationals are used in field theory to construct field extensions of the field of rational numbers Q. Given the square-free integer c, the augmentation of Q by quadratic irrationals using c produces a quadratic field Q(c). For example, the inverses of elements of Q(c) are of the same form as the above algebraic numbers:

d a + b c = a d b d c a 2 b 2 c . {\displaystyle {d \over a+b{\sqrt {c}}}={ad-bd{\sqrt {c}} \over a^{2}-b^{2}c}.}

Quadratic irrationals have useful properties, especially in relation to continued fractions, where we have the result that all real quadratic irrationals, and only real quadratic irrationals, have periodic continued fraction forms. For example

3 = 1.732 = [ 1 ; 1 , 2 , 1 , 2 , 1 , 2 , ] {\displaystyle {\sqrt {3}}=1.732\ldots =[1;1,2,1,2,1,2,\ldots ]}

The periodic continued fractions can be placed in one-to-one correspondence with the rational numbers. The correspondence is explicitly provided by Minkowski's question mark function, and an explicit construction is given in that article. It is entirely analogous to the correspondence between rational numbers and strings of binary digits that have an eventually-repeating tail, which is also provided by the question mark function. Such repeating sequences correspond to periodic orbits of the dyadic transformation (for the binary digits) and the Gauss map h ( x ) = 1 / x 1 / x {\displaystyle h(x)=1/x-\lfloor 1/x\rfloor } for continued fractions.