oblivious$54295$ - Definition. Was ist oblivious$54295$
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist oblivious$54295$ - definition

I/O-EFFICIENT ALGORITHM REGARDLESS OF CACHE SIZE
Cache-oblivious; Cache oblivious; Cache oblivious model; Cache-oblivious model
  • M}} objects. The external memory on the right is unbounded.

Oram         
  • The ORAM compiler substitutes the read and write instructions in the original program with subroutines Oread and Owrite.
  • An illustration of the memory of the oblivious program showing the binary tree and position map.
Oblivious ram; ORAM
Oram is an Old Norse surname particularly found in the North of England. Notable people with this surname are:
Cache-oblivious algorithm         
In computing, a cache-oblivious algorithm (or cache-transcendent algorithm) is an algorithm designed to take advantage of a processor cache without having the size of the cache (or the length of the cache lines, etc.) as an explicit parameter.
Oblivious transfer         
TYPE OF CRYPTOGRAPHY PROTOCOL
Oblivious Transfer
In cryptography, an oblivious transfer (OT) protocol is a type of protocol in which a sender transfers one of potentially many pieces of information to a receiver, but remains [as to what piece (if any) has been transferred.

Wikipedia

Cache-oblivious algorithm

In computing, a cache-oblivious algorithm (or cache-transcendent algorithm) is an algorithm designed to take advantage of a processor cache without having the size of the cache (or the length of the cache lines, etc.) as an explicit parameter. An optimal cache-oblivious algorithm is a cache-oblivious algorithm that uses the cache optimally (in an asymptotic sense, ignoring constant factors). Thus, a cache-oblivious algorithm is designed to perform well, without modification, on multiple machines with different cache sizes, or for a memory hierarchy with different levels of cache having different sizes. Cache-oblivious algorithms are contrasted with explicit loop tiling, which explicitly breaks a problem into blocks that are optimally sized for a given cache.

Optimal cache-oblivious algorithms are known for matrix multiplication, matrix transposition, sorting, and several other problems. Some more general algorithms, such as Cooley–Tukey FFT, are optimally cache-oblivious under certain choices of parameters. As these algorithms are only optimal in an asymptotic sense (ignoring constant factors), further machine-specific tuning may be required to obtain nearly optimal performance in an absolute sense. The goal of cache-oblivious algorithms is to reduce the amount of such tuning that is required.

Typically, a cache-oblivious algorithm works by a recursive divide-and-conquer algorithm, where the problem is divided into smaller and smaller subproblems. Eventually, one reaches a subproblem size that fits into the cache, regardless of the cache size. For example, an optimal cache-oblivious matrix multiplication is obtained by recursively dividing each matrix into four sub-matrices to be multiplied, multiplying the submatrices in a depth-first fashion. In tuning for a specific machine, one may use a hybrid algorithm which uses loop tiling tuned for the specific cache sizes at the bottom level but otherwise uses the cache-oblivious algorithm.