octahedral$54529$ - Definition. Was ist octahedral$54529$
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist octahedral$54529$ - definition

GRAPH
Turan graph; Cocktail party graph; Octahedral Graph; Octahedral graph
  • The [[octahedron]], a 3-[[cross polytope]] whose edges and vertices form ''K''<sub>2,2,2</sub>, a Turán graph ''T''(6,3). Unconnected vertices are given the same color in this face-centered projection.

Order-5 octahedral honeycomb         
  • 50px
  • 40px
  • 40px
  • 40px
  • 40px
  • 40px
  • 240px
  • 240px
  • 240px
  • 240px
  • 240px
  • 40px
  • 40px
TESSELATION IN REGULAR SPACE
Order-6 octahedral honeycomb; Infinite-order octahedral honeycomb; Order-7 octahedral honeycomb; Order-8 octahedral honeycomb
In the geometry of hyperbolic 3-space, the order-5 octahedral honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,4,5}. It has five octahedra {3,4} around each edge.
Octahedral symmetry         
  • 48 symmetry elements of a cube
  • 12px
  • 180px
  • 180px
  • 180px
  • 180px
  • 180px
  • 180px
  • 180px
  • 180px
  • 180px
  • 180px
  • 100px
  • 100px
  • 100px
  • Subgroups ordered in a Hasse diagram
  • 25px
  • 25px
  • 25px
  • 25px
  • 25px
  • 25px
  • 25px
  • 25px
  • 25px
  • 25px
  • 25px
  • 25px
  • 25px
  • 12px
  • 100px
  • 100px
  • 60px
  • 60px
  • Hexahedron (cube)
  • Octahedron
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 12px
  • 100px
  • 100px
  • 40px
  • 40px
  • 40px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
3D SYMMETRY GROUP
Octahedral group; Cubic symmetry; Cubical symmetry; Cube group; Full octahedral symmetry; 432 symmetry; Full octahedral group; Cuboctahedral Symmetry; Cubic Symmetry; Chiral octahedral symmetry
A regular octahedron has 24 rotational (or orientation-preserving) symmetries, and 48 symmetries altogether. These include transformations that combine a reflection and a rotation.
Cubic-octahedral honeycomb         
  • 160px
  • 120px
  • 120px
  • 40px
  • 160px
  • 240px
Cube-octahedron honeycomb; Truncated cubic-octahedral honeycomb; Cyclotruncated octahedral-cubic honeycomb; Cyclosnub octahedral-cubic honeycomb; Cyclotruncated cubic-octahedral honeycomb; Rectified cubic-octahedral honeycomb; Omnitruncated cubic-octahedral honeycomb; Omnisnub cubic-octahedral honeycomb
In the geometry of hyperbolic 3-space, the cubic-octahedral honeycomb is a compact uniform honeycomb, constructed from cube, octahedron, and cuboctahedron cells, in a rhombicuboctahedron vertex figure. It has a single-ring Coxeter diagram, , and is named by its two regular cells.

Wikipedia

Turán graph

The Turán graph, denoted by T ( n , r ) {\displaystyle T(n,r)} , is a complete multipartite graph; it is formed by partitioning a set of n {\displaystyle n} vertices into r {\displaystyle r} subsets, with sizes as equal as possible, and then connecting two vertices by an edge if and only if they belong to different subsets. Where q {\displaystyle q} and s {\displaystyle s} are the quotient and remainder of dividing n {\displaystyle n} by r {\displaystyle r} (so n = q r + s {\displaystyle n=qr+s} ), the graph is of the form K q + 1 , q + 1 , , q , q {\displaystyle K_{q+1,q+1,\ldots ,q,q}} , and the number of edges is

( 1 1 r ) n 2 s 2 2 + ( s 2 ) {\displaystyle \left(1-{\frac {1}{r}}\right){\frac {n^{2}-s^{2}}{2}}+{s \choose 2}} .

The graph has s {\displaystyle s} subsets of size q + 1 {\displaystyle q+1} , and r s {\displaystyle r-s} subsets of size q {\displaystyle q} ; each vertex has degree n q 1 {\displaystyle n-q-1} or n q {\displaystyle n-q} . It is a regular graph if n {\displaystyle n} is divisible by r {\displaystyle r} (i.e. when s = 0 {\displaystyle s=0} ).