Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:
In mathematics, a binary relation R is called well-founded (or wellfounded or foundational) on a class X if every non-empty subset S ⊆ X has a minimal element with respect to R, that is, an element m ∈ S not related by s R m (for instance, "s is not smaller than m") for any s ∈ S. In other words, a relation is well founded if
Some authors include an extra condition that R is set-like, i.e., that the elements less than any given element form a set.Equivalently, assuming the axiom of dependent choice, a relation is well-founded when it contains no infinite descending chains, which can be proved when there is no infinite sequence x0, x1, x2, ... of elements of X such that xn+1 R xn for every natural number n.
In order theory, a partial order is called well-founded if the corresponding strict order is a well-founded relation. If the order is a total order then it is called a well-order.
In set theory, a set x is called a well-founded set if the set membership relation is well-founded on the transitive closure of x. The axiom of regularity, which is one of the axioms of Zermelo–Fraenkel set theory, asserts that all sets are well-founded.
A relation R is converse well-founded, upwards well-founded or Noetherian on X, if the converse relation R−1 is well-founded on X. In this case R is also said to satisfy the ascending chain condition. In the context of rewriting systems, a Noetherian relation is also called terminating.