bússola dos senos - Übersetzung nach
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

bússola dos senos - Übersetzung nach

Teorema dos senos; Teorema do seno; Regra dos senos
  • Lei dos senos para um triângulo esférico

bússola         
  • [[GPS]] com bússola e [[altímetro]]
INSTRUMENTO USADO PARA NAVEGAÇÃO E ORIENTAÇÃO
Bussola; Bússula; Agulha de marear
компас, буссоль, (перен.) ориентир, путеводитель
bússola         
  • [[GPS]] com bússola e [[altímetro]]
INSTRUMENTO USADO PARA NAVEGAÇÃO E ORIENTAÇÃO
Bussola; Bússula; Agulha de marear
компас, буссоль
bússola         
  • [[GPS]] com bússola e [[altímetro]]
INSTRUMENTO USADO PARA NAVEGAÇÃO E ORIENTAÇÃO
Bussola; Bússula; Agulha de marear
компас

Definition

ГАРРИНЧА
Гарринша (Garrincha) Мануэл Франсиску дус Сантос (1933-83), бразильский спортсмен (футбол). Выступал в составе команды "Ботафого" (Рио-де-Жанейро) в 1953-65. Чемпион мира 1958 и 1962. Один из лучших крайних нападающих в истории мирового футбола.
---
Гарринша (Gаrrincha) Мануэл Франсиску дус Сантос (28 октября 1933, Пау-Гранде, округ Маже, штат Гуанабара - 20 января 1983, Рио-де-Жанейро), бразильский спортсмен. Двукратный чемпион мира (1958 и 1962) по футболу в составе национальной сборной. Лучший правый крайний нападающий в истории мирового футбола. Неудержимый Дед и отец его были родом из небольшого индейского племени фулнио из штата Алагоас. Гарринча отличался свободолюбивым и независимым характером. В 20 лет он вышел на поле знаменитого клуба "Ботафого" (Рио-де-Жанейро) и, показав целый каскад оригинальных финтов, легко обыграл защитника сборной Бразилии Н. Сантоса; после этого был сразу зачислен в команду (1953). В первом же матче забил три гола. В 1958 на чемпионате мира в Швеции вышел на поле в матче со сборной СССР вместе с 17-летним Пеле и устроил яркий "бенефис" футбола, о котором с восторгом вспоминали очевидцы. В течение 8 лет сборная Бразилии не проиграла ни одного матча, пока в ее составе играли Пеле и Гарринча. Тренеры "Ботафого" и сборной предоставили Гарринче полную свободу действий на правом фланге, где он был неудержим. "Чарли Чаплин футбола" Так прозвали его журналисты и за походку вразвалочку (ведь одна нога была заметно короче другой) и за элегантное, артистическое обращение с мячом, выражавшееся в точнейших пасах, в искусстве обводки, в мощных и точных ударах по воротам. В каждом сезоне он забивал не менее 20 голов, а лучшими для него как для бомбардира стали 1958 и 1962 - 33 и 35 голов в составе "Ботафого". В середине 1960-х гг. из-за серьезных травм вынужден был пропустить много игр. В 1966 провел последние матчи в составе сборной Бразилии на чемпионате мира в Лондоне (всего сыграл за сборную Бразилии 61 матч и забил 17 голов). После "Ботафого" (1953-65) выступал за клубы "Коринтиас" (Санта-Паулу, 1966), "Фламенго" Рио-де-Жанейро, 1968-69), "Олария" (Рио-де-Жанейро, 1972). После окончания футбольной карьеры работать тренером не смог. Был очень одинок, несмотря на то, что имел 11 дочерей. Не случайно последняя книга о нем, вышедшая после его смерти, называется "Одинокая звезда" (Р. Кастро, 1995).

Wikipedia

Lei dos senos


Em trigonometria, a lei dos senos é uma relação matemática de proporção sobre a medida de triângulos arbitrários em um plano. Em um triângulo A B C {\displaystyle ABC} qualquer, inscrito em uma circunferência de raio r {\displaystyle r} , de lados B C ¯ {\displaystyle {\overline {BC}}} , A C ¯ {\displaystyle {\overline {AC}}\,\!} e A B ¯ {\displaystyle {\overline {AB}}\,\!} , que medem respectivamente a {\displaystyle a} , b {\displaystyle b} e c {\displaystyle c} , com ângulos internos A ^ {\displaystyle {\widehat {A}}} , B ^ {\displaystyle {\widehat {B}}} e C ^ {\displaystyle {\widehat {C}}} vale a seguinte relação:

a sin A ^ = b sin B ^ = c sin C ^ = 2 r {\displaystyle {\frac {a}{\sin {\widehat {A}}}}={\frac {b}{\sin {\widehat {B}}}}={\frac {c}{\sin {\widehat {C}}}}=2r\,\!}