dígito fracionário - Übersetzung nach russisch
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

dígito fracionário - Übersetzung nach russisch

Cálculo Fracionário

dígito fracionário      
мат. дробная часть (числа)
dígito fracionário      
- (матем.) дробная часть (числа)
dedo         
EXTREMIDADE DOS MEMBROS DOS MAMÍFEROS
Quirodactilo; Dedos; Digíto (anatomia)
палец, штифт, кулачок, собачка, стопор, упор, 1/часть Луны или Солнца (при расчетах затмений)

Definition

Dedo
m.
Cada uma das partes distintas e articuladas, que terminam as mãos e os pés do homem.
Cada um dos prolongamentos, que terminam os pés de alguns animaes.
Cada uma das partes da luva, correspondentes aos dedos.
Extensão, equivalente à largura de um dedo.
Fig.
Aptidão.
Vestígio de aptidões.
Poder dirigente.
Loc. fam.
Dois dedos de conversa, um pouco de cavaco, de parola.
(Lat. digitus)

Wikipedia

Cálculo fracionário

O Cálculo de Ordem Não inteira, tradicionalmente conhecido como cálculo fracionário é um ramo da análise matemática que estuda as possibilidades de usar potências de números reais ou potências de números complexos em operadores diferenciais

D = d d x {\displaystyle D={\frac {d}{dx}}\,}

e o operador de integração J. (Usualmente J é usado no lugar de I para não causar confusão com outras notações semelhantes a I e identidades.)

Neste contexto, o têrmo potência refere-se à aplicação interativa ou composição, com o mesmo sentido que f 2(x) = f(f(x)).

Por exemplo, pode-se questionar o significado da interpretação

D = D 1 / 2 {\displaystyle {\sqrt {D}}=D^{1/2}\,}

como uma raiz quadrada de um operador derivacional (um operador semi-interativo), i.e., uma expressão para algum operador que quando aplicado duas vezes em uma função terá o mesmo efeito que uma diferenciação. Generalizando, podemos definir a questão

D a {\displaystyle D^{a}\,}

para números reais, valores de a como quando a passa pelos valores inteiros n, usualmente uma diferenciação por n cobre os n > 0, e as −nésimas potências de J quando n < 0.

Há vários motivos para analisarmos esta questão. Um é que, deste modo o semigrupo das potências Dn na variável discreta n é vista como um semigrupo contínuo (espera-se) que os parâmetros a onde é um número real. Semigrupos contínuos pré-valentes em Matemática são de interesse teórico. Diz-se que fração é então o mesmo que o expoente, desde que precise ser um racional, mas que a expressão cálculo fracionário torne-se padrão por tradição.

Equações fracionárias diferenciais são uma generalização de equações diferenciais pela aplicação do cálculo fracionário.