wronskiano - Definition. Was ist wronskiano
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist wronskiano - definition


wronskiano         
adj (Wronski, np+ano2) Relativo a Józef Maria Wronski (1778-1853), matemático polonês
W. das funções y1, y2, ..... yn, sm O determinante cuja primeira linha é ocupada pelas funções e as linhas seguintes são formadas pelas suas derivadas até a ordem n-l.
Wronskiano         
Em matemática, wronskiano é uma função aplicada especialmente no estudo de equações diferenciais. O nome dessa função é uma homenagem ao matemático polonês Josef Wronski.
wronskiano      
adj.
1 relativo ao matemático e místico polonês Józef Maria Hoene-Wronski (1778-1853) ou próprio dele n adj.s.m.
2 que ou quem é seguidor ou grande conhecedor das concepções místicas ou matemáticas deste autor n s.m.
-mat
3 determinante de ordem n em que a primeira linha é formada por n funções e as demais linhas são obtidas derivando a anterior
-gram ver, no verbete derivado , o que se diz de derivados gráficos de nomes próprios estrangeiros
-etim antr. Józef Wronski + -iano

Wikipedia

Wronskiano

Em matemática, wronskiano é uma função aplicada especialmente no estudo de equações diferenciais. O nome dessa função é uma homenagem ao matemático polonês Josef Wronski.

Dado um conjunto de funções f1, f2, ... fn, define-se o Wronskiano de acordo com o determinante:

W ( f 1 , , f n ) = | f 1 f 2 f n f 1 f 2 f n f 1 ( n 1 ) f 2 ( n 1 ) f n ( n 1 ) | {\displaystyle W(f_{1},\ldots ,f_{n})={\begin{vmatrix}f_{1}&f_{2}&\cdots &f_{n}\\f_{1}'&f_{2}'&\cdots &f_{n}'\\\vdots &\vdots &\cdots &\vdots \\f_{1}^{(n-1)}&f_{2}^{(n-1)}&\cdots &f_{n}^{(n-1)}\end{vmatrix}}} .

Este determinante é construído pondo as funções na primeira linha, as primeiras derivadas de cada função na segunda linha, assim procedendo até a derivada de ordem (n-1), formando assim um arranjo quadrado denominado matriz fundamental.