Алгебраическое число - Definition. Was ist Алгебраическое число
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Алгебраическое число - definition

ЧИСЛО, ЯВЛЯЮЩЕЕСЯ КОРНЕМ ПОЛИНОМА
Алгебраические числа; 𝔸

АЛГЕБРАИЧЕСКОЕ ЧИСЛО         
число, удовлетворяющее алгебраическому уравнению с целыми коэффициентами.
Алгебраическое число         

число а, удовлетворяющее алгебраическому уравнению a1αn+ ... + акα +an+1 = 0, где n ≥ 1, a1, ..., an, an+1 - целые (рациональные) числа. Число α называется целым А. ч., если a1 = 1. Если многочлен f(x) = a1xn + ... + anx + an+1 не является произведением двух др. многочленов положительной степени с рациональными коэффициентом, то число n называется степенью А. ч. α. Простейшие А.ч. - корни двучленного уравнения xn = а, где а - рациональное число. Например, А. ч. будут рациональные числа, числа

целыми А. ч. будут целые числа, числа

С понятием А. ч. тесно связаны два больших направления в теории чисел. 1) Арифметика А. ч. (алгебраическая теория чисел), созданная Э. Куммером в середине 19 в., изучает свойства А. ч. Целые А. ч. обладают рядом свойств, аналогичных свойствам целых рациональных чисел, однако теорема об единственности разложения числа на простые множители не имеет места в теории целых А. ч. Для сохранения единственности разложения Куммер ввёл в рассмотрение т. н. "идеальные" числа (см. Идеал). 2) Теория приближения А. ч. изучает степень приближения А. ч. рациональными числами или алгебраическими же числами. Первым результатом в этом направлении была теорема Ж. Лиувилля (См. Лиувилль), показывающая, что А. ч. "плохо" приближаются рациональными числами, точнее: если α - А. ч. степени n, то при любых целых рациональных р и q имеет место неравенство [α - p/q] > C/qn, где С = С(α) > 0 - постоянная, не зависящая от р и q, отсюда следует, что легко построить произвольное количество неалгебраических - трансцендентных чисел (См. Трансцендентное число).

Лит.: Гекке Э., Лекции по теории алгебраических чисел, пер. с нем., М. - Л., 1940; Гельфонд А. О., Трансцендентные и алгебраические числа, М., 1952; Боревич З. И., Шафаревич И. P., Теория чисел, М., 1964.

А. А. Карацуба.

Алгебраическое число         
Алгебраи́ческое число́ над полем \mathbb{F} — элемент алгебраического замыкания поля \mathbb{F}, то есть корень многочлена (не равного тождественно нулю) с коэффициентами из \mathbb{F}.

Wikipedia

Алгебраическое число

Алгебраи́ческое число́ над полем F {\displaystyle \mathbb {F} }  — элемент алгебраического замыкания поля F {\displaystyle \mathbb {F} } , то есть корень многочлена (не равного тождественно нулю) с коэффициентами из F {\displaystyle \mathbb {F} } .

Если поле не указывается, то предполагается поле рациональных чисел, то есть F = Q {\displaystyle \mathbb {F} =\mathbb {Q} } , в этом случае поле алгебраических чисел обычно обозначается A {\displaystyle \mathbb {A} } . Это множество является подполем поля комплексных чисел.

Was ist АЛГЕБРАИЧЕСКОЕ ЧИСЛО - Definition