Барометрическая формула - Definition. Was ist Барометрическая формула
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Барометрическая формула - definition


БАРОМЕТРИЧЕСКАЯ ФОРМУЛА         
определяет зависимость атмосферного давления от высоты. Используется, напр., для градуировки высотомеров, в барометрического нивелировании, при построении стандартной атмосферы.
Барометрическая формула         

определяет зависимость давления или плотности газа от высоты в поле тяжести.

Для идеального газа, имеющего постоянную температуру Т и находящегося в однородном поле тяжести (во всех точках его объёма ускорение свободного падения g одинаково), Б. ф. имеет следующий вид:

р = p0exp [-gμ.(h - h0)/RT] (1),

где р - давление газа в слое, расположенном на высоте h, p0 - давление на нулевом уровне (h = h0), μ - молекулярная масса газа, R - Газовая постоянная, Т - абсолютная температура. Графически зависимость (1) представлена на рис. Из Б. ф. (1) следует, что концентрация молекул n (или плотность газа) убывает с высотой по тому же закону:

n =n0exp [-mg (h-h0)/kT],

где m - масса молекулы, k - Больцмана постоянная.

Б. ф. может быть получена из закона распределения молекул идеального газа по скоростям и координатам в потенциальном силовом поле (см. Больцмана статистика). При этом должны выполняться два условия: постоянство температуры газа и однородность силового поля. Аналогичные условия могут выполняться и для мельчайших твёрдых частичек, взвешенных в жидкости или газе. Основываясь на этом, французский физик Ж. Перрен в 1908 применил Б. ф. к распределению по высоте частичек эмульсии, что позволило ему непосредственно определить значение постоянной Больцмана.

Б. ф. показывает, что плотность газа уменьшается с высотой по экспоненциальному закону. Величина -mg (h-h0)/kT, определяющая быстроту спада плотности, представляет собой отношение потенциальной энергии частиц к их средней кинетической энергии, пропорциональной kT. Чем выше температура Т, тем медленнее убывает плотность с высотой. С другой стороны, возрастание силы тяжести mg (при неизменной температуре) приводит к значительно большему уплотнению нижних слоев и увеличению перепада (градиента) плотности. Действующая на частицы сила тяжести mg может изменяться за счёт двух величин: ускорения g и массы частиц m.

Следовательно, в смеси газов, находящейся в поле тяжести, молекулы различной массы по-разному распределяются по высоте.

Реальное распределение давления и плотности воздуха в земной атмосфере не следует Б. ф., т.к. в пределах атмосферы температура и ускорение свободного падения меняются с высотой и географической широтой. Кроме того, атмосферное давление увеличивается с концентрацией в атмосфере паров воды.

Б. ф. лежит в основе барометрического нивелирования - метода определения разности высот Δh между двумя точками по измеряемому в этих точках давлению (p1 и p2). Поскольку атмосферное давление зависит от погоды, интервал времени между измерениями должен быть возможно меньшим, а пункты измерения располагаться не слишком далеко друг от друга. Б. ф. записывается в этом случае в виде: Δh = 18400∙ (1+αt) lg (p1/p2) (в м), где t - средняя температура слоя воздуха между точками измерения, α - температурный коэффициент объёмного расширения воздуха. Погрешность при расчётах по этой формуле не превышает 0,1-0,5\% от измеряемой высоты. Более точна формула Лапласа, учитывающая влияние влажности воздуха и изменение ускорения свободного падения.

Лит.: Хргиан А. Х., Физика атмосферы, М., 1958.

Ю. Н. Дрожжин.

Падение давления газа с высотой в однородном поле тяжести при постоянной температуре газа (Т1>Т), Пунктирная кривая показывает реальное изменение температуры атмосферы с высотой.

Барометрическая формула         
Барометрическая формула — зависимость давления или плотности газа от высоты в поле силы тяжести в стационарных условиях.

Wikipedia

Барометрическая формула

Барометрическая формула — зависимость давления или плотности газа от высоты в поле силы тяжести в стационарных условиях.

Для идеального газа, имеющего постоянную температуру T {\displaystyle T} и находящегося в однородном поле тяжести (во всех точках его объёма ускорение свободного падения g {\displaystyle g} одинаково), барометрическая формула имеет следующий вид:

p = p 0 exp [ M g h h 0 R T ] , {\displaystyle p=p_{0}\exp \left[-Mg{\frac {h-h_{0}}{RT}}\right],}

где p {\displaystyle p}  — давление газа в слое, расположенном на высоте h {\displaystyle h} , p 0 {\displaystyle p_{0}}  — давление на нулевом уровне ( h = h 0 {\displaystyle h=h_{0}} ), M {\displaystyle M}  — молярная масса газа, R {\displaystyle R}  — универсальная газовая постоянная, T {\displaystyle T}  — абсолютная температура. Из барометрической формулы следует, что концентрация молекул n {\displaystyle n} (или плотность газа) убывает с высотой по тому же закону:

n = n 0 exp [ m g h h 0 k T ] , {\displaystyle n=n_{0}\exp \left[-mg{\frac {h-h_{0}}{kT}}\right],}

где m {\displaystyle m}  — масса молекулы газа, k {\displaystyle k}  — постоянная Больцмана.

Барометрическая формула может быть получена из закона распределения молекул идеального газа по скоростям и координатам в потенциальном силовом поле (см. Статистика Максвелла — Больцмана). При этом должны выполняться три условия: стационарность, постоянство температуры газа с высотой и однородность силового поля. Аналогичные условия могут выполняться и для мельчайших твёрдых частичек, взвешенных в жидкости или газе. Основываясь на этом, французский физик Ж. Перрен в 1908 году применил барометрическую формулу к распределению по высоте частичек эмульсии, что позволило ему непосредственно определить значение постоянной Больцмана.

Барометрическая формула показывает, что плотность газа уменьшается с высотой по экспоненциальному закону. Величина m g h h 0 k T {\displaystyle mg{\frac {h-h_{0}}{kT}}} , определяющая быстроту спада плотности, представляет собой отношение потенциальной энергии частиц к их средней кинетической энергии, пропорциональной k T {\displaystyle kT} . Чем выше температура T {\displaystyle T} , тем медленнее убывает плотность с высотой. С другой стороны, возрастание силы тяжести m g {\displaystyle mg} (при неизменной температуре) приводит к значительно большему уплотнению нижних слоев и увеличению перепада (градиента) плотности. Действующая на частицы сила тяжести m g {\displaystyle mg} может изменяться за счёт двух величин: ускорения свободного падения g {\displaystyle g} и массы частиц m {\displaystyle m} .

Следовательно, в смеси газов, находящейся в поле тяжести, молекулы различной массы по-разному распределяются по высоте.

Реальное распределение давления и плотности воздуха в земной атмосфере не следует барометрической формуле, так как в пределах атмосферы температура меняется с высотой и во времени; ускорение свободного падения меняются с высотой и географической широтой. Кроме того, атмосферное давление увеличивается с концентрацией в атмосфере паров воды.

Барометрическая формула лежит в основе барометрического нивелирования — метода определения разности высот Δ h {\displaystyle \Delta h} между двумя точками по измеряемому в этих точках давлению ( p 1 {\displaystyle p_{1}} и p 2 {\displaystyle p_{2}} ). Поскольку атмосферное давление зависит от погоды, интервал времени между измерениями должен быть возможно меньшим, а пункты измерения располагаться не слишком далеко друг от друга. Барометрическая формула записывается в этом случае в виде:

Δ h = 18400 ( 1 + a t ) lg ( p 1 / p 2 ) , {\displaystyle \Delta h=18400(1+at)\lg(p_{1}/p_{2}),} (в м)

где t {\displaystyle t}  — средняя температура (по шкале Цельсия) слоя воздуха между точками измерения, a {\displaystyle a}  — температурный коэффициент объёмного расширения воздуха (0,003665 при 0 °С). Погрешность при расчётах по этой формуле не превышает 0,1—0,5 % от измеряемой высоты. Более точна формула Лапласа, учитывающая влияние влажности воздуха и изменение ускорения свободного падения.

Was ist БАРОМЕТРИЧЕСКАЯ ФОРМУЛА - Definition