Вероятность - Definition. Was ist Вероятность
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Вероятность - definition

МЕРА ВОЗМОЖНОСТИ ТОГО, ЧТО МОЖЕТ СЛУЧИТЬСЯ СОБЫТИЕ
Вероятность события; Вероятностная мера; Теорема сложения вероятностей; Теорема умножения вероятностей; Вероятности
  • Андрей Николаевич Колмогоров
  • Карл Фридрих Гаусс]]
  • Христиан Гюйгенс]], вероятно, опубликовал первую книгу по теории вероятностей
  • Простой пример: вероятность того, что на кубике выпадет число «5» (как и для любого другого числа), равна <math>\tfrac{1}{6}</math>
  • [[Доска Гальтона]] — демонстрирует [[нормальное распределение]]

вероятность         
ВЕРО'ЯТНОСТЬ, вероятности, мн. нет, ·жен. ·отвлеч. сущ. к вероятный
.
Теория вероятности - отдел прикладной математики, изучающий законы случайных явлений и их приложения к явлениям массовым. По всей вероятности - по-видимому, по всем данным.
ВЕРОЯТНОСТЬ         
2. возможность исполнимости, осуществимость чего-нибудь.
Степень вероятности чего-н.
ВЕРОЯТНОСТЬ         
в математике - числовая характеристика степени возможности появления какого-либо случайного события при тех или иных определенных, могущих повторяться неограниченное число раз условиях (см. Вероятностей теория).

Wikipedia

Вероятность

Вероя́тность — степень (относительная мера, количественная оценка) возможности наступления некоторого события. Когда основания для того, чтобы какое-нибудь возможное событие произошло в действительности, перевешивают противоположные основания, то это событие называют вероятным, в противном случае — маловероятным или невероятным. Перевес положительных оснований над отрицательными, и наоборот, может быть в различной степени, вследствие чего вероятностьневероятность) бывает большей либо меньшей. Поэтому часто вероятность оценивается на качественном уровне, особенно в тех случаях, когда более или менее точная количественная оценка невозможна или крайне затруднена. Возможны различные градации «уровней» вероятности.

Исследование вероятности с математической точки зрения составляет особую дисциплину — теорию вероятностей. В теории вероятностей и математической статистике понятие вероятности формализуется как числовая характеристика события — вероятностная мера (или её значение) — мера на множестве событий (подмножеств множества элементарных событий), принимающая значения от 0 {\displaystyle 0} до 1 {\displaystyle 1} . Значение 1 {\displaystyle 1} соответствует достоверному событию. Невозможное событие имеет вероятность 0 (обратное, вообще говоря, не всегда верно). Если вероятность наступления события равна p {\displaystyle p} , то вероятность его ненаступления (а также невероятность наступления) равна 1 p {\displaystyle 1-p} . В частности, вероятность 1 / 2 {\displaystyle 1/2} означает равную вероятность наступления и ненаступления события.

Классическое определение вероятности основано на понятии равновозможности исходов. В качестве вероятности выступает отношение количества исходов, благоприятствующих данному событию, к общему числу равновозможных исходов. Например, вероятности выпадения «орла» или «решки» при случайном подбрасывании монеты одинаковы и равны 1 / 2 {\displaystyle 1/2} , вероятности выпадения любой грани игральной кости одинаковы и равны 1 / 6 {\displaystyle 1/6} . Данное классическое «определение» вероятности можно обобщить на случай бесконечного количества возможных значений — например, если некоторое событие может произойти с равной вероятностью в любой точке (количество точек бесконечно) некоторой ограниченной области пространства (плоскости), то вероятность того, что оно произойдёт в некоторой части этой допустимой области равна отношению объёма (площади) этой части к объёму (площади) области всех возможных точек.

Эмпирическое «определение» вероятности связано с частотой наступления события исходя из того, что при достаточно большом числе испытаний частота должна стремиться к объективной степени возможности этого события. В современном изложении теории вероятностей вероятность определяется аксиоматически, как частный случай абстрактной теории меры множества. Тем не менее, связующим звеном между абстрактной мерой и вероятностью, выражающей степень возможности наступления события, является именно частота его наблюдения.

Вероятностное описание тех или иных явлений получило широкое распространение в современной науке, в частности в эконометрике, статистической физике макроскопических (термодинамических) систем, где даже в случае классического детерминированного описания движения частиц детерминированное описание всей системы частиц не представляется практически возможным и целесообразным. В квантовой физике сами описываемые процессы имеют вероятностную природу.

Beispiele aus Textkorpus für Вероятность
1. Вероятность разочарования выше, чем вероятность успеха.
2. Эксперты оценивают вероятность его одобрения в ''%. вероятность его одобрения в ''%.
3. Здесь большая вероятность потерять меньше и меньшая вероятность выиграть больше.
4. Сильные ливни повышают вероятность наводнений, более редкие дожди - вероятность засух.
5. Увеличивается вероятность простудных заболеваний.
Was ist вероятность - Definition