Газовая динамика - Definition. Was ist Газовая динамика
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Газовая динамика - definition

РАЗДЕЛ МЕХАНИКИ, ИЗУЧАЮЩИЙ ЗАКОНЫ ДВИЖЕНИЯ ГАЗООБРАЗНОЙ СРЕДЫ И ЕЁ ВЗАИМОДЕЙСТВИЯ С ДВИЖУЩИМИСЯ В НЕЙ ТВЁРДЫМИ ТЕЛАМИ
Газовая динамика; Аэрогазодинамика; Аэродинамическая сила
  • ударные волны]], в которых поток тормозится ([[эффект Прандтля — Глоерта]])
  • почтовой марке]]. 1963

ГАЗОВАЯ ДИНАМИКА         
раздел аэродинамики, изучающий движение сжимаемых газов, силовое и тепловое взаимодействие их с поверхностью обтекаемых ими тел. Газовая динамика включает теорию течений сжимаемого газа, теорию ударных волн, теорию течений диссоциированного и ионизированного газа, теорию теплообмена (конвективного и лучистого).
Газовая динамика         

раздел гидро-аэромеханики (См. Гидроаэромеханика), в котором изучается движение сжимаемых газообразных и жидких сред и их взаимодействие с твёрдыми телами. Как часть физики, Г. д. связана с термодинамикой (См. Термодинамика) и акустикой (См. Акустика).

Свойство сжимаемости состоит в способности вещества изменять свой первоначальный объём под действием перепада давления или при изменении температуры. Поэтому сжимаемость становится существенной лишь при больших скоростях движения среды, соизмеримых со скоростью распространения звука в этой среде и превосходящих её, когда в среде возникают большие перепады давления (см. Бернулли уравнение) и большие градиенты температуры. Современная Г. д. изучает также течения газов при высоких температурах, сопровождающиеся химическими (диссоциация, горение и др. химические реакции) и физическими (ионизация, излучение) процессами. Изучение движения газов при таких условиях, когда газ нельзя считать сплошной средой, а необходимо рассматривать взаимодействие составляющих его молекул между собой и с твёрдыми телами, относится к области аэродинамики разреженных газов (См. Аэродинамика разреженных газов), основанной на молекулярно-кинетической теории газов. Динамика сжимаемого газа при малых скоростях движения больших воздушных масс в атмосфере составляет основу динамической метеорологии (См. Динамическая метеорология). Г. д. исторически возникла как дальнейшее развитие и обобщение аэродинамики (См. Аэродинамика), поэтому часто говорят о единой науке - аэрогазодинамике.

Теоретическую основу Г. д. составляет применение основных законов механики и термодинамики к движущемуся объёму сжимаемого газа. Навье - Стокса уравнения, описывающие движение вязкого сжимаемого газа, были получены в 1-й половине 19 в. Немецкий учёный Б.Риман (1860), английский - У. Ранкин (1870), французский -А. Гюгоньо (1887) исследовали распространение в газе ударных волн (См. Ударная волна), которые возникают только в сжимаемых средах и движутся со скоростью, превышающей скорость распространения в них звуковых волн. Риман создал также основы теории неустановившихся движений газа, т. е. таких движений, когда параметры газового потока в каждой его точке изменяются с течением времени.

Фундаментальную роль в формировании Г. д. как самостоятельной науки сыграла опубликована в 1902 работа С. А. Чаплыгина "О газовых струях". Развитые в ней методы решения газодинамических задач получили впоследствии широкое распространение и обобщение. Плодотворный метод решения задач Г. д. предложили в 1908 нем. учёные Л. Прандтль и Т. Майер, исследовавшие частный случай течения газа с непрерывным увеличением скорости. В 1922 в работе "Опыт гидромеханики сжимаемой жидкости" советский учёный А. А. Фридман заложил основы динамической метеорологии. В 1929 нем. учёными Л. Прандтлем и А. Буземаном был разработан эффективный численно-графический метод решения широкого класса газодинамических задач, распространённый в 1934 сов. учёным Ф. И. Франклем на более сложные случаи течения газа. Эти методы широко применяются при решении задач Г. д. с помощью ЭВМ. В 1921 в СССР была создана, а в 1927 оформилась как научное учреждение Газодинамическая лаборатория, деятельность которой совместно с Группой изучения реактивного движения (1932) заложила основы сов. ракетной техники.

Как самостоятельный раздел гидроаэромеханики Г. д. существует с 1930, когда рост скоростей в авиации потребовал серьёзного исследования влияния сжимаемости при изучении движения воздуха. В 1935 в Риме состоялся 1-й международный конгресс по Г. д. Интенсивное развитие Г. д. началось во время и особенно после окончания 2-й мировой войны 1939-45 в связи с широким использованием Г. д. в технике: применение реактивной авиации, ракетного оружия, ракетных и воздушно-реактивных двигателей; полёты самолётов и снарядов со сверхзвуковыми скоростями; создание атомных бомб, взрыв которых влечёт за собой распространение сильных взрывных и ударных волн. В этот период Г. д. выдающуюся роль сыграли исследования советских учёных С. А. Христиановича, А. А. Дородницына, Л. И. Седова, Г. И. Петрова, Г. Г. Чёрного и др., немецких учёных Прандтля, Буземана, английских учёных Дж. Тейлора, Дж. Лайтхилла, американских учёных Т. Кармана, А. Ферри, У. Хейса, китайского учёного Цянь Сюэ-сэня, а также учёных др. стран.

Задачи Г. д. при проектировании разнообразных аппаратов, двигателей и газовых машин состоят в определении сил давления и трения, температуры и теплового потока в любой точке поверхности тела или канала, омываемых газом, в любой момент времени. При исследовании распространения газовых струй, взрывных и ударных волн, горения и детонации методами Г. д. определяются давление, температура и др. параметры газа во всей области распространения. Изучение поставленных техникой сложных задач превратило современную Г. д. в науку о движении произвольных смесей газов, которые могут содержать также твёрдые и жидкие частицы (например, выхлопные газы ракетных двигателей на жидком или твёрдом топливе), причём параметры, характеризующие состояние этих газов (давление, температура, плотность, электропроводность и др.), могут изменяться в широких пределах.

Для развития совресенной Г. д. характерно неразрывное сочетание теоретических методов, использования ЭВМ и постановки сложных аэродинамических и физических экспериментов. Теоретические представления, частично опирающиеся на экспериментальные данные, позволяют описать с помощью уравнений движение газовых смесей сложного состава, в том числе многофазных смесей при наличии физико-химических превращений. Методами прикладной математики разрабатываются эффективные способы решения этих уравнений на ЭВМ. Наконец, из экспериментальных данных определяются необходимые значения физических и химических характеристик, свойственных изучаемой среде и рассматриваемым процессам (коэффициент вязкости и теплопроводности, скорости химических реакций, времена релаксации и др.).

Многие задачи, поставленные современной техникой перед Г. д., пока не могут быть решены расчётно-теоретическими методами, в этих случаях широко пользуются газодинамическими экспериментами, поставленными на основе подобия теории (См. Подобия теория) и законов гидродинамического и аэродинамического моделирования (См. Моделирование). Газодинамические эксперименты в аэрогазодинамических лабораториях проводятся в сверхзвуковых и гиперзвуковых аэродинамических трубах (См. Аэродинамическая труба), на баллистических установках, в ударных и импульсных трубах и на др. газодинамических установках специального назначения (см. также Аэродинамические измерения).

Законами Г. д. широко пользуются во внешней и внутренней баллистике, при изучении таких явлений, как взрыв, горение, детонация, конденсация в движущемся потоке. Прикладная Г. д., в которой обычно применяются упрощённые теоретические представления об осреднённых по поперечному сечению параметрах газового потока и основные закономерности движения, найденные экспериментальным путём, используется при расчёте компрессоров и турбин, сопел и диффузоров, ракетных двигателей, аэродинамических труб, эжекторов, газопроводов и многих др. технических устройств.

Газодинамические исследования ведутся в тех же научных учреждениях, что и исследования по аэродинамике, а результаты их публикуются в тех же научных журналах и сборниках.

Лит.: Основы газовой динамики, под ред. Г. Эммонса, пер. с англ., М., 1963; Карман Т., Сверхзвуковая аэродинамика. Принципы и приложения, пер. с англ., М., 1948; Абрамович Г. Н., Прикладная газовая динамика, 3 изд., М., 1969; Чёрный Г. Г., Течения газа с большой сверхзвуковой скоростью, М., 1959; Станюкович К. П., Неустановившиеся движения сплошной среды, М., 1955; Зельдович Я. Б., Райзер Ю. П., физика ударных волн и высокотемпературных гидродинамических явлений, М., 1963.

С. Л. Вишневецкий.

АЭРОДИНАМИЧЕСКАЯ СИЛА         
сила, с которой газообразная среда (напр., воздух) действует на поверхность движущегося в ней твердого тела (напр., крыла самолета). Полную аэродинамическую силу (называется полным аэродинамическим сопротивлением) можно разложить на аэродинамическое сопротивление, подъемную силу и боковую силу, перпендикулярную первым двум.

Wikipedia

Газодинамика

Газодина́мика (или га́зовая дина́мика) — раздел механики, изучающий законы движения газообразной среды и её взаимодействия с движущимися в ней твёрдыми телами. Чаще встречается под названием аэродина́мика (от др.-греч. ἀηρ — воздух и δύναμις — сила), но включает в себя не только аэродинамику, но и собственно газовую динамику. Последняя исторически возникла как дальнейшее развитие и обобщение аэродинамики, и именно поэтому часто говорят о единой науке — аэрогазодинамике. Как часть физики, аэрогазодинамика тесно связана с термодинамикой и акустикой.

Формальное исследование аэродинамики в современном смысле началось в восемнадцатом веке, хотя наблюдения фундаментальных понятий, таких как аэродинамическое сопротивление были описаны гораздо раньше. Большинство первых исследований в аэродинамике были направлены на достижение полета воздушного судна, что было впервые продемонстрировано Отто Лилиенталем в 1891 году. С тех пор использование аэродинамики посредством математического анализа, эмпирических приближений, экспериментов в аэродинамической трубе и компьютерное моделирование сформировало рациональную основу для развития полета воздушных судов и ряда других технологий. Последние работы в области аэродинамики были сосредоточены на проблемах, связанных со сжимаемым потоком, турбулентностью и пограничными слоями.

Beispiele aus Textkorpus für Газовая динамика
1. С Физтехом связано развитие и других важнейших практического использования научно-технических направлений: термоэлектрическое преобразование энергии (А.Ф.Иоффе), прочность материалов (С.Н.Журков), газовая динамика (Ю.А.Дунаев), силовая полупроводниковая электроника (В.М.Тучкевич, И.В.Грехов), оптоэлектроника и солнечная энергетика, основанные на технологиях полупроводниковых гетероструктур (Ж.И.Алферов, В.М.Андреев), и многие другие.
Was ist ГАЗОВАЯ ДИНАМИКА - Definition